Skip to content

Visualizing Convolutional Neural Networks in Python

Notifications You must be signed in to change notification settings

RussellCloud/keras-via

Repository files navigation

Visualizing Convolutional Neural Networks in Python

卷积神经网络可视化方法

随着计算能力的提升,神经网络在很多地方出色的表现。但在工程应用领域,却有一个问题一直困扰着大家,神经网络到底是怎么工作的?尽管神经网络为数据挖掘人员省去了大量的特征构造时间,但在某些要求可靠性的领域,可解释性不强,却一直在制约深度学习的应用。

为了提高神经网络的可解释性,研究人员从很多角度做了探索。其中一方面,就是利用目标的梯度,突出重要像素,从而可视化神经网络的决策过程。

Conv filter visualization

Convolutional filters learn 'template matching' filters that maximize the output when a similar template pattern is found in the input image. Visualize those templates via Activation Maximization.

Dense layer visualization

How can we assess whether a network is over/under fitting or generalizing well?

Attention Maps

How can we assess whether a network is attending to correct parts of the image in order to generate a decision?

使用方法

本地的使用方法

依赖

keras
keras-vis

操作过程

git clone https://github.com/RussellCloud/keras-via.git
cd keras-via
jupyter notebook

RussellCloud 云服务

省去繁杂的配置过程;随开随停

Step 1

搞定一个平台账号,点我,创建名为keras-viakeras项目。

pip install -U russell-cli

Step 2

克隆复现

git clone https://github.com/RussellCloud/keras-via.git
cd keras-via

russell login
russell init --name keras-via
russell run --mode jupyter --gpu

参考资料

About

Visualizing Convolutional Neural Networks in Python

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published