- torch >= 1.8.1
- numpy >= 1.20.3
- scikit-learn >= 0.24.2
- pytorch geometric >= 1.7.2
- pyaml
- scipy
- tqdm
- Download the data from google drive
# Set the test dataset and model structure
CUDA_VISIBLE_DEVICES=[CUDA NUM] python main.py --test_dataset [FEW-SHOT DATASET] --model [ST-META MODEL]
# For example: Use GRU model to train a model, and test on PEMS-BAY datasets
CUDA_VISIBLE_DEVICES=0 python main.py --test_dataset pems-bay --model GRU
If you find this repository, e.g., the paper, code and the datasets, useful in your research, please cite the following paper:
@inproceedings{DBLP:conf/KDD/CrossCityTransfer22,
author = {Bin Lu and
Xiaoying Gan and
Weinan Zhang and
Huaxiu Yao and
Luoyi Fu and
Xinbing Wang},
title = {Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge Transfer},
booktitle = {{KDD} '22: The 28th {ACM} SIGKDD Conference on Knowledge Discovery and Data Mining,
Washington, DC, USA, August 14--18, 2022},
publisher = {{ACM}},
year = {2022}
}