Skip to content
/ MURA Public
forked from pengshiqi/MURA

Bone X-Ray Deep Learning Competition.

Notifications You must be signed in to change notification settings

RickyyyFu/MURA

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Path on server: /DATA4_DB3/data/sqpeng/Projects/MURA

start visdom: python -m visdom.server

LOGs

🌀 2018-06-11 13:02

Accuracy=66.31%

🌀 2018-06-12 08:09

Accuracy=71.60%

🌀 2018-06-13 01:45

Accuracy=83.95%

🌀 2018-07-10

Average:

model ELBOW FINGER FOREARM HAND HUMERUS SHOULDER WRIST AVERAGE
Baseline 0.710 0.389 0.737 0.851 0.600 0.729 0.931 0.705
DenseNet169 0.746 0.582 0.711 0.540 0.778 0.576 0.701 0.662
ResNet152 0.733 0.569 0.650 0.480 0.793 0.576 0.710 0.644
VGG16 0.632 0.592 0.650 0.495 0.689 0.566 0.742 0.624
Ensemble(3) 0.760 0.569 0.681 0.480 0.807 0.586 0.729 0.659
Ensemble(2) 0.760 0.546 0.665 0.525 0.793 0.586 0.719 0.656

Min:

model ELBOW FINGER FOREARM HAND HUMERUS SHOULDER WRIST AVERAGE
Baseline 0.710 0.389 0.737 0.851 0.600 0.729 0.931 0.705
DenseNet169 0.764 0.608 0.683 0.545 0.763 0.579 0.770 0.673
ResNet152 0.735 0.665 0.696 0.533 0.733 0.557 0.714 0.662
VGG16 0.614 0.561 0.682 0.507 0.674 0.518 0.712 0.610
Ensemble(3) 0.734 0.594 0.742 0.555 0.719 0.578 0.750 0.667
Ensemble(2) 0.774 0.665 0.697 0.555 0.748 0.588 0.733 0.680
  1. 数据预处理。
  2. 考虑 Collaborative Learning 。
  3. 考虑 各个部位共享一部分网络,然后单独训练。

🌀 2018-07-20 16:15

完成 MultiBranchDenseNet169,对于每个部位,分别训练最后一个DenseBlock和Classifier,但是效果不好,可能还存在问题。

Dataset

Path: /DATA4_DB3/data/public/MURA-v1.1

Description:

  • 7 folders: XR_ELBOW, XR_FINGER, XR_FOREARM, XR_HAND, XR_HUMERUS, XR_SHOULDER, XR_WRIST

  • Training data: 36808 images, 13457 cases

  • Validation data: 3197 images, 1199 cases

  • Training Data Distribution

body parts positive negative total
ELBOW 2006 2925 4931
FINGER 1968 3138 5106
FOREARM 661 1164 1825
HAND 1484 4059 5543
HUMERUS 599 673 1272
SHOULDER 4168 4211 8379
WRIST 3987 5765 9752
ALL 14873 21935 36808
  • Test Data Distribution
body parts positive negative total
ELBOW 230 235 465
FINGER 247 214 461
FOREARM 151 150 301
HAND 189 271 460
HUMERUS 140 148 288
SHOULDER 278 285 563
WRIST 295 364 659
ALL 1530 1667 3197

Images in training set are grey-scale images, i.e., there is only one channel.

The sizes of these images are various. Minimum width is 89, and minimum height is 132. Maximum width is 512, and maximum height is 512.

References

About

Bone X-Ray Deep Learning Competition.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%