Skip to content

ReaFly/grad-cam-pytorch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Grad-CAM with PyTorch

PyTorch implementation of Grad-CAM (Gradient-weighted Class Activation Mapping) [1]. Grad-CAM localizes and highlights discriminative regions that a convolutional neural network-based model activates to predict visual concepts. This repository only supports image classification models.

Dependencies

  • Python 2.7+/3.6+
  • PyTorch 0.4.1+
  • torchvision 0.2.1+
  • click
  • opencv

Usage

python demo.py --help
  • -i, --image-path: a path to an image (required)
  • -a, --arch: a model name from torchvision.models, e.g. "resnet152" (required)
  • -t, --target-layer: a layer to be visualized, e.g. "layer4.2" (required)
  • -k, --topk: the number of classes to generate (default: 3)
  • --cuda/--no-cuda: GPU or CPU

The command above generates, for top k classes:

  • Gradients by vanilla backpropagation
  • Gradients by guided backpropagation [2]
  • Gradients by deconvnet [2]
  • Grad-CAM [1]
  • Guided Grad-CAM [1]

The guided-* do not support F.relu but only nn.ReLU in this codes. For instance, off-the-shelf inception_v3 cannot cut off negative gradients during backward operation (#2).

Examples

Demo

python demo.py -a resnet152 \
               -t layer4 \
               -i samples/cat_dog.png
Method bull mastiff tiger cat boxer
Probability 0.54285 0.19302 0.10428
Grad-CAM [1]
Vanilla backpropagation
"Deconvnet" [2]
Guided backpropagation [2]
Guided Grad-CAM [1]

Grad-CAM with different models for "bull mastiff" class

python demo.py -a <model name> \
               -t <layer name> \
               -i samples/cat_dog.png
Model resnet152 vgg19 vgg19_bn densenet201 squeezenet1_1
Layer* layer4 features features features features
Grad-CAM [1]

* PyTorch module name

Grad-CAM at different layers of resnet152 for "bull mastiff" class

python demo2.py --image-path samples/cat_dog.png
Layer* layer1 layer2 layer3 layer4
Grad-CAM [1]

References

  1. R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, and D. Batra. "Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization". arXiv, 2016
  2. J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. "Striving for Simplicity: The All Convolutional Net". arXiv, 2014

About

PyTorch implementation of Grad-CAM

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%