Skip to content

Commit

Permalink
Merge branch '0.2.x' into slimelastic
Browse files Browse the repository at this point in the history
  • Loading branch information
ShanleiMu authored Mar 3, 2021
2 parents 1775a45 + e9a864f commit dc54dfe
Show file tree
Hide file tree
Showing 446 changed files with 22,449 additions and 9,488 deletions.
33 changes: 33 additions & 0 deletions .github/ISSUE_TEMPLATE/bug_report_CN.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
---
name: Bug 报告
about: 提交一份 bug 报告,帮助 RecBole 变得更好
title: "[\U0001F41BBUG] 用一句话描述您的问题。"
labels: bug
assignees: ''

---

**描述这个 bug**
对 bug 作一个清晰简明的描述。

**如何复现**
复现这个 bug 的步骤:
1. 您引入的额外 yaml 文件
2. 您的代码
3. 您的运行脚本

**预期**
对您的预期作清晰简明的描述。

**屏幕截图**
添加屏幕截图以帮助解释您的问题。(可选)

**链接**
添加能够复现 bug 的代码链接,如 Colab 或者其他在线 Jupyter 平台。(可选)

**实验环境(请补全下列信息):**
- 操作系统: [如 Linux, macOS 或 Windows]
- RecBole 版本 [如 0.1.0]
- Python 版本 [如 3.79]
- PyTorch 版本 [如 1.60]
- cudatoolkit 版本 [如 9.2, none]
20 changes: 20 additions & 0 deletions .github/ISSUE_TEMPLATE/feature_request_CN.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
---
name: 请求添加新功能
about: 提出一个关于本项目新功能/新特性的建议
title: "[\U0001F4A1SUG] 一句话描述您希望新增的功能或特性"
labels: enhancement
assignees: ''

---

**您希望添加的功能是否与某个问题相关?**
关于这个问题的简洁清晰的描述,例如,当 [...] 时,我总是很沮丧。

**描述您希望的解决方案**
关于解决方案的简洁清晰的描述。

**描述您考虑的替代方案**
关于您考虑的,能实现这个功能的其他替代方案的简洁清晰的描述。

**其他**
您可以添加其他任何的资料、链接或者屏幕截图,以帮助我们理解这个新功能。
11 changes: 9 additions & 2 deletions .github/workflows/python-package.yml
Original file line number Diff line number Diff line change
Expand Up @@ -23,12 +23,19 @@ jobs:
python -m pip install --upgrade pip
pip install pytest
pip install dgl
pip install xgboost
pip install community
pip install networkx
pip install python-louvain
if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
# Use "python -m pytest" instead of "pytest" to fix imports
- name: Test metrics
run: |
python -m pytest -v tests/metrics
- name: Test data
run: |
python -m pytest -v tests/data
- name: Test evaluation_setting
run: |
python -m pytest -v tests/evaluation_setting
Expand All @@ -40,4 +47,4 @@ jobs:
python -m pytest -v tests/config/test_config.py
export PYTHONPATH=.
python tests/config/test_command_line.py --use_gpu=False --valid_metric=Recall@10 --split_ratio=[0.7,0.2,0.1] --metrics=['Recall@10'] --epochs=200 --eval_setting='LO_RS' --learning_rate=0.3
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -9,3 +9,4 @@
saved/
*.lprof
*.egg-info/
docs/build/
37 changes: 25 additions & 12 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,23 +11,25 @@
[![License](https://img.shields.io/badge/License-MIT-blue.svg)](./LICENSE)


[HomePage] | [Docs] | [Datasets] | [Paper]
[HomePage] | [Docs] | [Datasets] | [Paper] | [Blogs] | [中文版]

[HomePage]: https://recbole.io/
[Docs]: https://recbole.io/docs/
[Datasets]: https://github.com/RUCAIBox/RecDatasets
[Paper]: https://arxiv.org/abs/2011.01731
[Blogs]: https://blog.csdn.net/Turinger_2000/article/details/111182852
[中文版]: README_CN.md

RecBole is developed based on Python and PyTorch for reproducing and developing recommendation algorithms in a unified,
comprehensive and efficient framework for research purpose.
Our library includes 53 recommendation algorithms, covering four major categories:
Our library includes 65 recommendation algorithms, covering four major categories:

+ General Recommendation
+ Sequential Recommendation
+ Context-aware Recommendation
+ Knowledge-based Recommendation

We design a unified and flexible data file format, and provide the support for 27 benchmark recommendation datasets.
We design a unified and flexible data file format, and provide the support for 28 benchmark recommendation datasets.
A user can apply the provided script to process the original data copy, or simply download the processed datasets
by our team.

Expand All @@ -43,16 +45,21 @@ by our team.
+ **General and extensible data structure.** We design general and extensible data structures to unify the formatting and
usage of various recommendation datasets.

+ **Comprehensive benchmark models and datasets.** We implement 53 commonly used recommendation algorithms, and provide
the formatted copies of 27 recommendation datasets.
+ **Comprehensive benchmark models and datasets.** We implement 65 commonly used recommendation algorithms, and provide
the formatted copies of 28 recommendation datasets.

+ **Efficient GPU-accelerated execution.** We optimize the efficiency of our library with a number of improved techniques
oriented to the GPU environment.

+ **Extensive and standard evaluation protocols.** We support a series of widely adopted evaluation protocols or settings
for testing and comparing recommendation algorithms.


## RecBole News
**01/15/2021**: We release RecBole [v0.2.0](https://github.com/RUCAIBox/RecBole/releases/tag/v0.2.0).

**12/10/2020**: 我们发布了[RecBole小白入门系列中文博客(持续更新中)](https://blog.csdn.net/Turinger_2000/article/details/111182852)

**12/06/2020**: We release RecBole [v0.1.2](https://github.com/RUCAIBox/RecBole/releases/tag/v0.1.2).

**11/29/2020**: We constructed preliminary experiments to test the time and memory cost on three
Expand Down Expand Up @@ -161,20 +168,23 @@ python run_recbole.py --model=[model_name]


## Time and Memory Costs
We constructed preliminary experiments to test the time and memory cost on three different-sized datasets (small, medium and large). For detailed information, you can click the following links.<br>
We constructed preliminary experiments to test the time and memory cost on three different-sized datasets
(small, medium and large). For detailed information, you can click the following links.

* [General recommendation models](asset/time_test_result/General_recommendation.md)<br>
* [Sequential recommendation models](asset/time_test_result/Sequential_recommendation.md)<br>
* [Context-aware recommendation models](asset/time_test_result/Context-aware_recommendation.md)<br>
* [Knowledge-based recommendation models](asset/time_test_result/Knowledge-based_recommendation.md)<br>
* [General recommendation models](asset/time_test_result/General_recommendation.md)
* [Sequential recommendation models](asset/time_test_result/Sequential_recommendation.md)
* [Context-aware recommendation models](asset/time_test_result/Context-aware_recommendation.md)
* [Knowledge-based recommendation models](asset/time_test_result/Knowledge-based_recommendation.md)

NOTE: Our test results only gave the approximate time and memory cost of our implementations in the RecBole library (based on our machine server). Any feedback or suggestions about the implementations and test are welcome. We will keep improving our implementations, and update these test results.
NOTE: Our test results only gave the approximate time and memory cost of our implementations in the RecBole library
(based on our machine server). Any feedback or suggestions about the implementations and test are welcome.
We will keep improving our implementations, and update these test results.


## RecBole Major Releases
| Releases | Date | Features |
|-----------|--------|-------------------------|
| v0.1.2 | 12/06/2020 | Basic RecBole |
| v0.2.0 | 01/15/2021 | RecBole |
| v0.1.1 | 11/03/2020 | Basic RecBole |

## Contributing
Expand All @@ -185,6 +195,9 @@ We welcome all contributions from bug fixes to new features and extensions.

We expect all contributions discussed in the issue tracker and going through PRs.

We thank the insightful suggestions from [@tszumowski](https://github.com/tszumowski), [@rowedenny](https://github.com/rowedenny), [@deklanw](https://github.com/deklanw) et.al.

We thank the nice contributions through PRs from [@rowedenny](https://github.com/rowedenny)[@deklanw](https://github.com/deklanw) et.al.

## Cite
If you find RecBole useful for your research or development, please cite the following [paper](https://arxiv.org/abs/2011.01731):
Expand Down
210 changes: 210 additions & 0 deletions README_CN.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,210 @@
![RecBole Logo](asset/logo.png)

--------------------------------------------------------------------------------

# RecBole (伯乐)

*“世有伯乐,然后有千里马。千里马常有,而伯乐不常有。”——韩愈《马说》*

[![PyPi Latest Release](https://img.shields.io/pypi/v/recbole)](https://pypi.org/project/recbole/)
[![Conda Latest Release](https://anaconda.org/aibox/recbole/badges/version.svg)](https://anaconda.org/aibox/recbole)
[![License](https://img.shields.io/badge/License-MIT-blue.svg)](./LICENSE)


[中文主页] | [文档] | [数据集] | [论文] | [博客] | [English Version]

[中文主页]: https://recbole.io/cn
[文档]: https://recbole.io/docs/
[数据集]: https://github.com/RUCAIBox/RecDatasets
[论文]: https://arxiv.org/abs/2011.01731
[博客]: https://blog.csdn.net/Turinger_2000/article/details/111182852
[English Version]: README.md


RecBole 是一个基于 PyTorch 实现的,面向研究者的,易于开发与复现的,统一、全面、高效的推荐系统代码库。
我们实现了53个推荐系统模型,包含常见的推荐系统类别,如:

+ General Recommendation
+ Sequential Recommendation
+ Context-aware Recommendation
+ Knowledge-based Recommendation


我们约定了一个统一、易用的数据文件格式,并已支持 27 个 benchmark dataset。
用户可以选择使用我们的数据集预处理脚本,或直接下载已被处理好的数据集文件。


<p align="center">
<img src="asset/framework.png" alt="RecBole v0.1 架构" width="600">
<br>
<b>图片</b>: RecBole 总体架构
</p>


## 特色
+ **通用和可扩展的数据结构** 我们设计了通用和可扩展的数据结构来支持各种推荐数据集统一化格式和使用。

+ **全面的基准模型和数据集** 我们实现了53个常用的推荐算法,并提供了27个推荐数据集的格式化副本。

+ **高效的 GPU 加速实现** 我们针对GPU环境使用了一系列的优化技术来提升代码库的效率。

+ **大规模的标准评测** 我们支持一系列被广泛认可的评估方式来测试和比较不同的推荐算法。


## RecBole 新闻
**12/10/2020**: 我们发布了[RecBole小白入门系列中文博客(持续更新中)](https://blog.csdn.net/Turinger_2000/article/details/111182852)

**12/06/2020**: 我们发布了 RecBole [v0.1.2](https://github.com/RUCAIBox/RecBole/releases/tag/v0.1.2).

**11/29/2020**: 我们在三个不同大小的数据集上进行了时间和内存开销的初步测试,
并提供了 [测试结果](https://github.com/RUCAIBox/RecBole#time-and-memory-costs) 以供参考。

**11/03/2020**: 我们发布了第一版 RecBole **v0.1.1**.


## 安装
RecBole可以在以下几种系统上运行:

* Linux
* Windows 10
* macOS X

RecBole需要在python 3.6或更高的环境下运行。

RecBole要求torch版本在1.6.0及以上,如果你想在GPU上运行RecBole,请确保你的CUDA版本或CUDAToolkit版本在9.2及以上。
这需要你的NVIDIA驱动版本为396.26或以上(在linux系统上)或者为397.44或以上(在Windows10系统上)。


### 从Conda安装

```bash
conda install -c aibox recbole
```

### 从pip安装

```bash
pip install recbole
```

### 从源文件安装
```bash
git clone https://github.com/RUCAIBox/RecBole.git && cd RecBole
pip install -e . --verbose
```

## 快速上手
如果你从GitHub下载了RecBole的源码,你可以使用提供的脚本进行简单的使用:

```bash
python run_recbole.py
```

这个例子将会在ml-100k这个数据集上进行BPR模型的训练和测试。

一般来说,这个例子将花费不到一分钟的时间,我们会得到一些类似下面的输出:

```
INFO ml-100k
The number of users: 944
Average actions of users: 106.04453870625663
The number of items: 1683
Average actions of items: 59.45303210463734
The number of inters: 100000
The sparsity of the dataset: 93.70575143257098%
INFO Evaluation Settings:
Group by user_id
Ordering: {'strategy': 'shuffle'}
Splitting: {'strategy': 'by_ratio', 'ratios': [0.8, 0.1, 0.1]}
Negative Sampling: {'strategy': 'full', 'distribution': 'uniform'}
INFO BPRMF(
(user_embedding): Embedding(944, 64)
(item_embedding): Embedding(1683, 64)
(loss): BPRLoss()
)
Trainable parameters: 168128
INFO epoch 0 training [time: 0.27s, train loss: 27.7231]
INFO epoch 0 evaluating [time: 0.12s, valid_score: 0.021900]
INFO valid result:
recall@10: 0.0073 mrr@10: 0.0219 ndcg@10: 0.0093 hit@10: 0.0795 precision@10: 0.0088
...
INFO epoch 63 training [time: 0.19s, train loss: 4.7660]
INFO epoch 63 evaluating [time: 0.08s, valid_score: 0.394500]
INFO valid result:
recall@10: 0.2156 mrr@10: 0.3945 ndcg@10: 0.2332 hit@10: 0.7593 precision@10: 0.1591
INFO Finished training, best eval result in epoch 52
INFO Loading model structure and parameters from saved/***.pth
INFO best valid result:
recall@10: 0.2169 mrr@10: 0.4005 ndcg@10: 0.235 hit@10: 0.7582 precision@10: 0.1598
INFO test result:
recall@10: 0.2368 mrr@10: 0.4519 ndcg@10: 0.2768 hit@10: 0.7614 precision@10: 0.1901
```

如果你要改参数,例如 ``learning_rate``, ``embedding_size``, 只需根据您的需求增加额外的参数,例如:

```bash
python run_recbole.py --learning_rate=0.0001 --embedding_size=128
```

如果你想改变运行模型,只需要在执行脚本时添加额外的设置参数即可:

```bash
python run_recbole.py --model=[model_name]
```


## 时间和内存开销
我们构建了初步的实验来测试三个不同大小的数据集(小、中、大)的时间和内存开销。
有关详细信息,请单击以下链接。

* [General recommendation models](asset/time_test_result/General_recommendation.md)<br>
* [Sequential recommendation models](asset/time_test_result/Sequential_recommendation.md)<br>
* [Context-aware recommendation models](asset/time_test_result/Context-aware_recommendation.md)<br>
* [Knowledge-based recommendation models](asset/time_test_result/Knowledge-based_recommendation.md)<br>

NOTE: 我们的测试结果只给出了RecBole库中实现模型的大致时间和内存开销(基于我们的机器服务器)。
我们欢迎任何关于测试、实现的建议。我们将继续改进我们的实现,并更新这些测试结果。


## RecBole 重要发布
| Releases | Date | Features |
|-----------|--------|-------------------------|
| v0.1.1 | 11/03/2020 | Basic RecBole |


## 贡献

如果您遇到错误或有任何建议,请通过 [Issue](https://github.com/RUCAIBox/RecBole/issues) 进行反馈

我们欢迎关于修复错误、添加新特性的任何贡献。

如果想贡献代码,请先在issue中提出问题,然后再提PR。

我们对[@tszumowski](https://github.com/tszumowski), [@rowedenny](https://github.com/rowedenny), [@deklanw](https://github.com/deklanw) 等用户提出的建议表示感谢。

我们也对[@rowedenny](https://github.com/rowedenny), [@deklanw](https://github.com/deklanw) 等用户做出的贡献表示感谢。


## 引用
如果你觉得RecBole对你的科研工作有帮助,请引用我们的[论文](https://arxiv.org/abs/2011.01731):

```
@article{recbole,
title={RecBole: Towards a Unified, Comprehensive and Efficient Framework for Recommendation Algorithms},
author={Wayne Xin Zhao and Shanlei Mu and Yupeng Hou and Zihan Lin and Kaiyuan Li and Yushuo Chen and Yujie Lu and Hui Wang and Changxin Tian and Xingyu Pan and Yingqian Min and Zhichao Feng and Xinyan Fan and Xu Chen and Pengfei Wang and Wendi Ji and Yaliang Li and Xiaoling Wang and Ji-Rong Wen},
year={2020},
journal={arXiv preprint arXiv:2011.01731}
}
```

## 项目团队
RecBole由 [中国人民大学, 北京邮电大学, 华东师范大学](https://www.recbole.io/cn/about.html) 的同学和老师进行开发和维护。

## 免责声明
RecBole 基于 [MIT License](./LICENSE) 进行开发,本项目的所有数据和代码只能被用于学术目的。
Binary file modified asset/framework.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified asset/logo.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading

0 comments on commit dc54dfe

Please sign in to comment.