-
Notifications
You must be signed in to change notification settings - Fork 627
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #4 from RUCAIBox/0.2.x
get latest code from 0.2.x
- Loading branch information
Showing
54 changed files
with
2,476 additions
and
555 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,189 @@ | ||
## Time and memory cost of context-aware recommendation models | ||
|
||
### Datasets information: | ||
|
||
| Dataset | #Interaction | #Feature Field | #Feature | | ||
| ------- | ------------: | --------------: | --------: | | ||
| ml-1m | 1,000,209 | 5 | 134 | | ||
| Criteo | 2,292,530 | 39 | 2,572,192 | | ||
| Avazu | 4,218,938 | 21 | 1,326,631 | | ||
|
||
### Device information | ||
|
||
``` | ||
OS: Linux | ||
Python Version: 3.8.3 | ||
PyTorch Version: 1.7.0 | ||
cudatoolkit Version: 10.1 | ||
GPU: TITAN RTX(24GB) | ||
Machine Specs: 32 CPU machine, 64GB RAM | ||
``` | ||
|
||
### 1) ml-1m dataset: | ||
|
||
#### Time and memory cost on ml-1m dataset: | ||
|
||
| Method | Training Time (sec/epoch) | Evaluation Time (sec/epoch) | GPU Memory (GB) | | ||
| --------- | -----------------: | -----------------: | -----------: | | ||
| LR | 18.34 | 2.18 | 0.82 | | ||
| DIN | 20.37 | 2.26 | 1.16 | | ||
| DSSM | 21.93 | 2.24 | 0.95 | | ||
| FM | 19.33 | 2.34 | 0.83 | | ||
| DeepFM | 20.42 | 2.27 | 0.91 | | ||
| Wide&Deep | 26.13 | 2.95 | 0.89 | | ||
| NFM | 23.36 | 2.26 | 0.89 | | ||
| AFM | 20.08 | 2.26 | 0.92 | | ||
| AutoInt | 22.41 | 2.34 | 0.94 | | ||
| DCN | 28.33 | 2.97 | 0.93 | | ||
| FNN(DNN) | 19.51 | 2.21 | 0.91 | | ||
| PNN | 22.29 | 2.23 | 0.91 | | ||
| FFM | 22.98 | 2.47 | 0.87 | | ||
| FwFM | 23.38 | 2.50 | 0.85 | | ||
| xDeepFM | 24.40 | 2.30 | 1.06 | | ||
|
||
#### Config file of ml-1m dataset: | ||
|
||
``` | ||
# dataset config | ||
field_separator: "\t" | ||
seq_separator: " " | ||
USER_ID_FIELD: user_id | ||
ITEM_ID_FIELD: item_id | ||
LABEL_FIELD: label | ||
threshold: | ||
rating: 4.0 | ||
drop_filter_field : True | ||
load_col: | ||
inter: [user_id, item_id, rating] | ||
item: [item_id, release_year, genre] | ||
user: [user_id, age, gender, occupation] | ||
# training and evaluation | ||
epochs: 500 | ||
train_batch_size: 2048 | ||
eval_batch_size: 2048 | ||
eval_setting: RO_RS | ||
group_by_user: False | ||
valid_metric: AUC | ||
metrics: ['AUC', 'LogLoss'] | ||
``` | ||
|
||
Other parameters (including model parameters) are default value. | ||
|
||
### 2)Criteo dataset: | ||
|
||
#### Time and memory cost on Criteo dataset: | ||
|
||
| Method | Training Time (sec/epoch) | Evaluation Time (sec/epoch) | GPU Memory (GB) | | ||
| --------- | -------------------------: | ---------------------------: | ---------------: | | ||
| LR | 7.65 | 0.61 | 1.11 | | ||
| DIN | - | - | - | | ||
| DSSM | - | - | - | | ||
| FM | 9.77 | 0.73 | 1.45 | | ||
| DeepFM | 13.64 | 0.83 | 1.72 | | ||
| Wide&Deep | 13.58 | 0.80 | 1.72 | | ||
| NFM | 13.36 | 0.75 | 1.72 | | ||
| AFM | 19.40 | 1.02 | 2.34 | | ||
| AutoInt | 19.40 | 0.98 | 2.06 | | ||
| DCN | 16.25 | 0.78 | 1.67 | | ||
| FNN(DNN) | 10.03 | 0.64 | 1.63 | | ||
| PNN | 12.92 | 0.72 | 1.85 | | ||
| FFM | - | - | - | | ||
| FwFM | 1175.24 | 8.90 | 2.12 | | ||
| xDeepFM | 32.27 | 1.34 | 2.25 | | ||
|
||
#### Config file of Criteo dataset: | ||
|
||
``` | ||
# dataset config | ||
field_separator: "\t" | ||
seq_separator: " " | ||
USER_ID_FIELD: ~ | ||
ITEM_ID_FIELD: ~ | ||
LABEL_FIELD: label | ||
load_col: | ||
inter: '*' | ||
highest_val: | ||
index: 2292530 | ||
fill_nan: True | ||
normalize_all: True | ||
min_item_inter_num: 0 | ||
min_user_inter_num: 0 | ||
drop_filter_field : True | ||
# training and evaluation | ||
epochs: 500 | ||
train_batch_size: 2048 | ||
eval_batch_size: 2048 | ||
eval_setting: RO_RS | ||
group_by_user: False | ||
valid_metric: AUC | ||
metrics: ['AUC', 'LogLoss'] | ||
``` | ||
|
||
Other parameters (including model parameters) are default value. | ||
|
||
### 3)Avazu dataset: | ||
|
||
#### Time and memory cost on Avazu dataset: | ||
|
||
| Method | Training Time (sec/epoch) | Evaluation Time (sec/epoch) | GPU Memory (GB) | | ||
| --------- | -------------------------: | ---------------------------: | ---------------: | | ||
| LR | 9.30 | 0.76 | 1.42 | | ||
| DIN | - | - | - | | ||
| DSSM | - | - | - | | ||
| FM | 25.68 | 0.94 | 2.60 | | ||
| DeepFM | 28.41 | 1.19 | 2.66 | | ||
| Wide&Deep | 27.58 | 0.97 | 2.66 | | ||
| NFM | 30.46 | 1.06 | 2.66 | | ||
| AFM | 31.03 | 1.06 | 2.69 | | ||
| AutoInt | 38.11 | 1.41 | 2.84 | | ||
| DCN | 30.78 | 0.96 | 2.64 | | ||
| FNN(DNN) | 23.53 | 0.84 | 2.60 | | ||
| PNN | 25.86 | 0.90 | 2.68 | | ||
| FFM | - | - | - | | ||
| FwFM | 336.75 | 7.49 | 2.63 | | ||
| xDeepFM | 54.88 | 1.45 | 2.89 | | ||
|
||
#### Config file of Avazu dataset: | ||
|
||
``` | ||
# dataset config | ||
field_separator: "\t" | ||
seq_separator: " " | ||
USER_ID_FIELD: ~ | ||
ITEM_ID_FIELD: ~ | ||
LABEL_FIELD: label | ||
fill_nan: True | ||
normalize_all: True | ||
load_col: | ||
inter: '*' | ||
lowest_val: | ||
timestamp: 14102931 | ||
drop_filter_field : False | ||
# training and evaluation | ||
epochs: 500 | ||
train_batch_size: 2048 | ||
eval_batch_size: 2048 | ||
eval_setting: RO_RS | ||
group_by_user: False | ||
valid_metric: AUC | ||
metrics: ['AUC', 'LogLoss'] | ||
``` | ||
|
||
Other parameters (including model parameters) are default value. | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
Oops, something went wrong.