revert command queue (#4097) #25
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: Benchmarks | |
on: | |
push: | |
branches: | |
- master | |
- update_benchmark | |
jobs: | |
testmacbenchmark: | |
name: Mac Benchmark | |
runs-on: [self-hosted, macOS] | |
defaults: | |
run: | |
shell: bash -o pipefail {0} | |
if: github.repository_owner == 'tinygrad' | |
env: | |
PYTHONPATH: . | |
steps: | |
- name: Checkout Code | |
uses: actions/checkout@v4 | |
- name: Symlink models and datasets | |
run: | | |
mkdir -p weights | |
ln -s ~/tinygrad/disassemblers/applegpu disassemblers/applegpu | |
ln -s ~/tinygrad/weights/sd-v1-4.ckpt weights/sd-v1-4.ckpt | |
ln -s ~/tinygrad/weights/bpe_simple_vocab_16e6.txt.gz weights/bpe_simple_vocab_16e6.txt.gz | |
ln -s ~/tinygrad/weights/LLaMA weights/LLaMA | |
ln -s ~/tinygrad/extra/datasets/cifar-10-python.tar.gz extra/datasets/cifar-10-python.tar.gz | |
# TODO: why is this test not reliable? | |
#- name: Run Stable Diffusion | |
# run: python3 examples/stable_diffusion.py --seed 0 --noshow --timing | tee sd.txt | |
- name: Run model inference benchmark | |
run: METAL=1 python3 test/external/external_model_benchmark.py | |
- name: Test speed vs torch | |
run: BIG=2 MPS=1 python3 test/test_speed_v_torch.py | tee torch_speed.txt | |
- name: Run Tensor Core GEMM | |
run: | | |
DEBUG=2 python3 extra/gemm/simple_matmul.py | tee matmul.txt | |
DEBUG=2 HALF=1 python3 extra/gemm/simple_matmul.py | tee matmul_half.txt | |
- name: Run LLaMA | |
run: | | |
JIT=0 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_unjitted.txt | |
JIT=1 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_jitted.txt | |
- name: Run LLaMA with BEAM | |
run: JIT=1 BEAM=2 CACHELEVEL=0 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_beam.txt | |
- name: Run GPT2 | |
run: | | |
JIT=0 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing | tee gpt2_unjitted.txt | |
JIT=1 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing | tee gpt2_jitted.txt | |
- name: Run GPT2 w HALF | |
run: JIT=1 HALF=1 python3 examples/gpt2.py --count 10 --temperature 0 --timing | tee gpt2_half.txt | |
- name: Run GPT2 w HALF/BEAM | |
run: JIT=1 HALF=1 BEAM=2 CACHELEVEL=0 CAST_BEFORE_VIEW=0 python3 examples/gpt2.py --count 10 --temperature 0 --timing | tee gpt2_half_beam.txt | |
- name: Train MNIST | |
run: time PYTHONPATH=. TARGET_EVAL_ACC_PCT=97.3 python3 examples/beautiful_mnist.py | tee beautiful_mnist.txt | |
- name: Run 10 CIFAR training steps | |
run: STEPS=10 python3 examples/hlb_cifar10.py | tee train_cifar.txt | |
- name: Run 10 CIFAR training steps w HALF | |
run: STEPS=10 DEFAULT_FLOAT=HALF python3 examples/hlb_cifar10.py | tee train_cifar_half.txt | |
#- name: Run 10 CIFAR training steps w BF16 | |
# run: STEPS=10 DEFAULT_FLOAT=BFLOAT16 python3 examples/hlb_cifar10.py | tee train_cifar_bf16.txt | |
# TODO: this is flaky too | |
# - name: Run 10 CIFAR training steps w winograd | |
# run: WINO=1 STEPS=10 python3 examples/hlb_cifar10.py | tee train_cifar_wino.txt | |
- uses: actions/upload-artifact@v4 | |
with: | |
name: Speed (Mac) | |
path: | | |
onnx_inference_speed.csv | |
torch_speed.txt | |
llama_unjitted.txt | |
llama_jitted.txt | |
llama_beam.txt | |
gpt2_unjitted.txt | |
gpt2_jitted.txt | |
gpt2_half.txt | |
gpt2_half_beam.txt | |
matmul.txt | |
matmul_half.txt | |
sd.txt | |
beautiful_mnist.txt | |
train_cifar.txt | |
train_cifar_half.txt | |
train_cifar_bf16.txt | |
train_cifar_wino.txt | |
testnvidiabenchmark: | |
name: NVIDIA Benchmark | |
runs-on: [self-hosted, Linux, CUDA] | |
defaults: | |
run: | |
shell: bash -o pipefail {0} | |
if: github.repository_owner == 'tinygrad' | |
env: | |
PYTHONPATH: . | |
steps: | |
- name: Checkout Code | |
uses: actions/checkout@v4 | |
- name: Print nvidia-smi | |
run: nvidia-smi | |
- name: Symlink models and datasets | |
run: | | |
mkdir -p weights | |
ln -s ~/tinygrad/weights/LLaMA weights/LLaMA | |
- name: Run model inference benchmark | |
run: CUDA=1 python3 test/external/external_model_benchmark.py | |
- name: Test speed vs torch | |
run: CUDA=1 BIG=2 TORCHCUDA=1 python3 test/test_speed_v_torch.py | tee torch_speed.txt | |
- name: Run Tensor Core GEMM(CUDA) | |
run: | | |
CUDA=1 HALF=1 DEBUG=2 python3 extra/gemm/simple_matmul.py | tee matmul.txt | |
CUDA=1 BFLOAT16=1 DEBUG=2 python3 extra/gemm/simple_matmul.py | tee matmul_bfloat16.txt | |
- name: Run Tensor Core GEMM(PTX) | |
run: CUDA=1 PTX=1 HALF=1 DEBUG=2 python3 extra/gemm/simple_matmul.py | tee matmul.txt | |
- name: Run LLaMA | |
run: | | |
CUDA=1 JIT=0 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_unjitted.txt | |
CUDA=1 JIT=1 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_jitted.txt | |
- name: Run LLaMA with BEAM | |
run: CUDA=1 JIT=1 BEAM=2 CACHELEVEL=0 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_beam.txt | |
- name: Run GPT2 | |
run: | | |
CUDA=1 JIT=0 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing | tee gpt2_unjitted.txt | |
CUDA=1 JIT=1 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing | tee gpt2_jitted.txt | |
- name: Run GPT2 w HALF | |
run: CUDA=1 JIT=1 HALF=1 python3 examples/gpt2.py --count 10 --temperature 0 --timing | tee gpt2_half.txt | |
- name: Run GPT2 w HALF/BEAM | |
run: CUDA=1 JIT=1 HALF=1 BEAM=2 CACHELEVEL=0 CAST_BEFORE_VIEW=0 JIT_BATCH_SIZE=4 python3 examples/gpt2.py --count 10 --temperature 0 --timing | tee gpt2_half_beam.txt | |
- name: Train MNIST | |
run: time PYTHONPATH=. CUDA=1 TARGET_EVAL_ACC_PCT=97.3 python3 examples/beautiful_mnist.py | tee beautiful_mnist.txt | |
- name: Run 10 CIFAR training steps | |
run: CUDA=1 STEPS=10 python3 examples/hlb_cifar10.py | tee train_cifar.txt | |
- name: Run 10 CIFAR training steps w HALF | |
run: CUDA=1 STEPS=10 DEFAULT_FLOAT=HALF python3 examples/hlb_cifar10.py | tee train_cifar_half.txt | |
- name: Run 10 CIFAR training steps w BF16 | |
run: CUDA=1 STEPS=10 DEFAULT_FLOAT=BFLOAT16 python3 examples/hlb_cifar10.py | tee train_cifar_bf16.txt | |
- name: Run full CIFAR training | |
run: time CUDA=1 DEFAULT_FLOAT=HALF LATEWINO=1 STEPS=1000 TARGET_EVAL_ACC_PCT=93.3 python3 examples/hlb_cifar10.py | tee train_cifar_one_gpu.txt | |
- uses: actions/upload-artifact@v4 | |
with: | |
name: Speed (NVIDIA) | |
path: | | |
onnx_inference_speed.csv | |
torch_speed.txt | |
matmul.txt | |
matmul_bfloat16.txt | |
llama_unjitted.txt | |
llama_jitted.txt | |
llama_beam.txt | |
gpt2_unjitted.txt | |
gpt2_jitted.txt | |
gpt2_half.txt | |
gpt2_half_beam.txt | |
beautiful_mnist.txt | |
train_cifar.txt | |
train_cifar_half.txt | |
train_cifar_bf16.txt | |
train_cifar_one_gpu.txt | |
testamdbenchmark: | |
name: tinybox Benchmark | |
runs-on: [self-hosted, Linux, tinybox] | |
defaults: | |
run: | |
shell: bash -o pipefail {0} | |
if: github.repository_owner == 'tinygrad' | |
env: | |
PYTHONPATH: . | |
steps: | |
- name: Checkout Code | |
uses: actions/checkout@v4 | |
- name: Symlink models and datasets | |
run: | | |
mkdir -p weights | |
ln -s ~/tinygrad/weights/bpe_simple_vocab_16e6.txt.gz weights/bpe_simple_vocab_16e6.txt.gz | |
ln -s ~/tinygrad/weights/LLaMA weights/LLaMA | |
ln -s ~/tinygrad/extra/datasets/cifar-10-python.tar.gz extra/datasets/cifar-10-python.tar.gz | |
ln -s /raid/weights/mixtral-8x7b-32kseqlen weights/mixtral-8x7b-32kseqlen | |
ln -s /raid/weights/LLaMA-2 weights/LLaMA-2 | |
mkdir -p extra/datasets | |
ln -s /raid/datasets/imagenet extra/datasets/imagenet | |
- name: Show off tinybox | |
run: /opt/rocm/bin/rocm-bandwidth-test | |
- name: Run model inference benchmark | |
run: LD_PRELOAD="/opt/rocm/lib/libhsa-runtime64.so" HSA=1 NOCLANG=1 python3 test/external/external_model_benchmark.py | |
- name: Test speed vs torch | |
run: | | |
python3 -c "import torch; print(torch.__version__)" | |
LD_PRELOAD="/opt/rocm/lib/libhsa-runtime64.so" HSA=1 BIG=2 TORCHCUDA=1 python3 test/test_speed_v_torch.py | tee torch_speed.txt | |
- name: Run Tensor Core GEMM | |
run: HSA=1 HALF=1 DEBUG=2 python3 extra/gemm/simple_matmul.py | tee matmul.txt | |
- name: Run Stable Diffusion | |
run: HSA=1 python3 examples/stable_diffusion.py --seed 0 --noshow --timing | tee sd.txt | |
- name: Run LLaMA 7B | |
run: | | |
HSA=1 JIT=0 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_unjitted.txt | |
HSA=1 JIT=1 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_jitted.txt | |
- name: Run LLaMA 7B with BEAM | |
run: HSA=1 JIT=1 BEAM=2 CACHELEVEL=0 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_beam.txt | |
- name: Run LLaMA 7B on 4 GPUs | |
run: HSA=1 python3 examples/llama.py --gen 1 --size 7B --shard 4 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_four_gpu.txt | |
- name: Run LLaMA 7B on 6 GPUs | |
run: HSA=1 python3 examples/llama.py --gen 1 --size 7B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_six_gpu.txt | |
- name: Run LLaMA-2 70B | |
run: HSA=1 python3 examples/llama.py --gen 2 --size 70B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_2_70B.txt | |
- name: Run Mixtral 8x7B | |
run: time HSA=1 python3 examples/mixtral.py --temperature 0 --count 10 --timing | tee mixtral.txt | |
- name: Run GPT2 | |
run: | | |
HSA=1 JIT=0 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing | tee gpt2_unjitted.txt | |
HSA=1 JIT=1 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing | tee gpt2_jitted.txt | |
- uses: actions/upload-artifact@v4 | |
with: | |
name: Speed (AMD) | |
path: | | |
onnx_inference_speed.csv | |
torch_speed.txt | |
llama_unjitted.txt | |
llama_jitted.txt | |
llama_beam.txt | |
llama_four_gpu.txt | |
llama_six_gpu.txt | |
llama_2_70B.txt | |
gpt2_unjitted.txt | |
gpt2_jitted.txt | |
matmul.txt | |
sd.txt | |
mixtral.txt | |
testmoreamdbenchmark: | |
name: tinybox Training | |
runs-on: [self-hosted, Linux, tinybox] | |
defaults: | |
run: | |
shell: bash -o pipefail {0} | |
if: github.repository_owner == 'tinygrad' | |
env: | |
PYTHONPATH: . | |
steps: | |
- name: Checkout Code | |
uses: actions/checkout@v4 | |
- name: Symlink models and datasets | |
run: | | |
mkdir -p weights | |
ln -s ~/tinygrad/weights/bpe_simple_vocab_16e6.txt.gz weights/bpe_simple_vocab_16e6.txt.gz | |
ln -s ~/tinygrad/weights/LLaMA weights/LLaMA | |
ln -s ~/tinygrad/extra/datasets/cifar-10-python.tar.gz extra/datasets/cifar-10-python.tar.gz | |
ln -s /raid/weights/mixtral-8x7b-32kseqlen weights/mixtral-8x7b-32kseqlen | |
ln -s /raid/weights/LLaMA-2 weights/LLaMA-2 | |
mkdir -p extra/datasets | |
ln -s /raid/datasets/imagenet extra/datasets/imagenet | |
- name: Train MNIST | |
run: time PYTHONPATH=. HSA=1 TARGET_EVAL_ACC_PCT=97.3 python3 examples/beautiful_mnist.py | tee beautiful_mnist.txt | |
- name: Run 10 CIFAR training steps | |
run: HSA=1 STEPS=10 python3 examples/hlb_cifar10.py | tee train_cifar.txt | |
- name: Run 10 CIFAR training steps w HALF | |
run: HSA=1 STEPS=10 DEFAULT_FLOAT=HALF python3 examples/hlb_cifar10.py | tee train_cifar_half.txt | |
- name: Run 10 CIFAR training steps w BF16 | |
run: HSA=1 STEPS=10 DEFAULT_FLOAT=BFLOAT16 python3 examples/hlb_cifar10.py | tee train_cifar_bf16.txt | |
- name: Run full CIFAR training w 1 GPU | |
run: time HSA=1 DEFAULT_FLOAT=HALF LATEWINO=1 STEPS=1000 TARGET_EVAL_ACC_PCT=93.3 python3 examples/hlb_cifar10.py | tee train_cifar_one_gpu.txt | |
- name: Run full CIFAR training steps w 6 GPUS | |
run: time HSA=1 DEFAULT_FLOAT=HALF STEPS=350 BS=1536 GPUS=6 TARGET_EVAL_ACC_PCT=93.3 python3 examples/hlb_cifar10.py | tee train_cifar_six_gpu.txt | |
- name: Run MLPerf resnet eval on training data | |
run: time HSA=1 MODEL=resnet python3 examples/mlperf/model_eval.py | |
- name: Run 10 MLPerf ResNet50 training steps (1 gpu) | |
run: HSA=1 BENCHMARK=10 BS=128 GPUS=1 MODEL=resnet python3 examples/mlperf/model_train.py | tee train_resnet_one_gpu.txt | |
- name: Run 10 MLPerf ResNet50 training steps (6 gpu) | |
run: HSA=1 BENCHMARK=10 BS=768 GPUS=6 MODEL=resnet python3 examples/mlperf/model_train.py | tee train_resnet.txt | |
- uses: actions/upload-artifact@v4 | |
with: | |
name: Speed (AMD Training) | |
path: | | |
beautiful_mnist.txt | |
train_cifar.txt | |
train_cifar_half.txt | |
train_cifar_bf16.txt | |
train_cifar_wino.txt | |
train_cifar_one_gpu.txt | |
train_resnet.txt | |
train_resnet_one_gpu.txt | |
train_cifar_six_gpu.txt |