Skip to content

Commit

Permalink
Add verbose and optimization args for parity tests (Gelu, Layernorm, … (
Browse files Browse the repository at this point in the history
microsoft#14739)

…GPT_Attention)

Some EPs require that onnxruntime and optimum optimizations are turned
off in order to run correctly. Allowing this option during test runs
allows the EP and library to perform their own optimization and be more
representative of actual use case conditions.

Important for EPs like MIGraphX which require optimizations to be offer
for certain operations

<!-- Describe your changes. -->

Allow flags to turn off optimizations and add verbose output to confirm
which EP is being used for the inference run and validate fallbacks

<!-- - Why is this change required? What problem does it solve?
- If it fixes an open issue, please link to the issue here. -->

Related to: microsoft#14702 & microsoft#14700

---------

Signed-off-by: Ted Themistokleous <[email protected]>
Co-authored-by: Ted Themistokleous <[email protected]>
  • Loading branch information
TedThemistokleous and TedThemistokleous committed May 24, 2023
1 parent 81120e9 commit 099f6d5
Show file tree
Hide file tree
Showing 5 changed files with 119 additions and 38 deletions.
9 changes: 8 additions & 1 deletion onnxruntime/python/tools/transformers/optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,7 @@ def optimize_by_onnxruntime(
optimized_model_path: Optional[str] = None,
opt_level: Optional[int] = 99,
disabled_optimizers=[],
verbose=False,
) -> str:
"""
Use onnxruntime to optimize model.
Expand Down Expand Up @@ -96,6 +97,10 @@ def optimize_by_onnxruntime(

sess_options.optimized_model_filepath = optimized_model_path

if verbose:
print("Using onnxruntime to optimize model - Debug level Set to verbose")
sess_options.log_severity_level = 0

kwargs = {}
if disabled_optimizers:
kwargs["disabled_optimizers"] = disabled_optimizers
Expand All @@ -112,7 +117,6 @@ def optimize_by_onnxruntime(
elif torch_version.hip:
gpu_ep.append("MIGraphXExecutionProvider")
gpu_ep.append("ROCMExecutionProvider")

session = onnxruntime.InferenceSession(onnx_model_path, sess_options, providers=gpu_ep, **kwargs)
assert not set(onnxruntime.get_available_providers()).isdisjoint(
["CUDAExecutionProvider", "ROCMExecutionProvider", "MIGraphXExecutionProvider"]
Expand Down Expand Up @@ -187,6 +191,7 @@ def optimize_model(
opt_level: Optional[int] = None,
use_gpu: bool = False,
only_onnxruntime: bool = False,
verbose=False,
):
"""Optimize Model by OnnxRuntime and/or python fusion logic.
Expand Down Expand Up @@ -258,6 +263,7 @@ def optimize_model(
use_gpu=use_gpu,
opt_level=opt_level,
disabled_optimizers=disabled_optimizers,
verbose=verbose,
)
elif opt_level == 1:
# basic optimizations (like constant folding and cast elimination) are not specified to execution provider.
Expand All @@ -267,6 +273,7 @@ def optimize_model(
use_gpu=False,
opt_level=1,
disabled_optimizers=disabled_optimizers,
verbose=verbose,
)

if only_onnxruntime and not temp_model_path:
Expand Down
50 changes: 44 additions & 6 deletions onnxruntime/test/python/transformers/parity_utilities.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,14 +3,44 @@
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# -------------------------------------------------------------------------

import argparse
import os
import sys

import numpy
import torch


def parse_arguments(namespace_filter=None):

parser = argparse.ArgumentParser()

# useful EPs that don't require the use of optmizer.py
parser.add_argument(
"-n",
"--no_optimize",
required=False,
action="store_false",
default=True,
dest="optimize",
help="Turn off onnxruntime optimizers (Default off optimizers ON)",
)

# useful for debugging and viewing state during test runs
parser.add_argument(
"-l",
"--log_verbose",
required=False,
action="store_true",
default=False,
help="Set Onnxruntime log_serverity_level=0 (VERBOSE) ",
)

args, remaining_args = parser.parse_known_args(namespace=namespace_filter)

return args, sys.argv[:1] + remaining_args


def find_transformers_source(sub_dir_paths=[]):
source_dir = os.path.join(
os.path.dirname(__file__),
Expand Down Expand Up @@ -74,13 +104,16 @@ def optimize_onnx(
expected_op=None,
use_gpu=False,
opt_level=None,
verbose=False,
):
if find_transformers_source():
from optimizer import optimize_model
else:
from onnxruntime.transformers.optimizer import optimize_model

onnx_model = optimize_model(input_onnx_path, model_type="gpt2", use_gpu=use_gpu, opt_level=opt_level)
onnx_model = optimize_model(
input_onnx_path, model_type="gpt2", use_gpu=use_gpu, opt_level=opt_level, verbose=verbose
)
onnx_model.save_model_to_file(optimized_onnx_path)

if expected_op is not None:
Expand Down Expand Up @@ -130,21 +163,26 @@ def compare_outputs(torch_outputs, ort_outputs, atol=1e-06, verbose=True):
return is_all_close, max(max_abs_diff)


def create_ort_session(onnx_model_path, use_gpu=True):
def create_ort_session(onnx_model_path, use_gpu=True, optimized=True, verbose=False):
from onnxruntime import GraphOptimizationLevel, InferenceSession, SessionOptions
from onnxruntime import __version__ as onnxruntime_version

sess_options = SessionOptions()
sess_options.graph_optimization_level = GraphOptimizationLevel.ORT_DISABLE_ALL
sess_options.intra_op_num_threads = 2
sess_options.log_severity_level = 2

if verbose:
sess_options.log_severity_level = 0

execution_providers = ["CPUExecutionProvider"]

if use_gpu:
if torch.version.cuda:
execution_providers.append("CUDAExecutionProvider")
elif torch.version.hip:
execution_providers.append("MIGraphXExecutionProvider")
if not optimized:
execution_providers.append("MIGraphXExecutionProvider")

execution_providers.append("ROCMExecutionProvider")

return InferenceSession(onnx_model_path, sess_options, providers=execution_providers)
Expand Down Expand Up @@ -172,7 +210,7 @@ def run_parity(
passed_cases = 0
max_diffs = []
printed = False # print only one sample
ort_session = create_ort_session(onnx_model_path, device.type == "cuda")
ort_session = create_ort_session(onnx_model_path, device.type == "cuda", optimized=optimized, verbose=verbose)
for i in range(test_cases):
input_hidden_states = create_inputs(batch_size, sequence_length, hidden_size, float16, device)

Expand Down
26 changes: 20 additions & 6 deletions onnxruntime/test/python/transformers/test_parity_gelu.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,6 +85,7 @@ def run(
formula=0,
sequence_length=2,
fp32_gelu_op=True,
verbose=False,
):
test_name = f"device={device}, float16={float16}, optimized={optimized}, batch_size={batch_size}, sequence_length={sequence_length}, hidden_size={hidden_size}, formula={formula}, fp32_gelu_op={fp32_gelu_op}"
print(f"\nTesting: {test_name}")
Expand All @@ -108,6 +109,7 @@ def run(
Gelu.get_fused_op(formula),
use_gpu=use_gpu,
opt_level=2 if use_gpu else None,
verbose=verbose,
)
onnx_path = optimized_onnx_path
else:
Expand All @@ -123,7 +125,7 @@ def run(
device,
optimized,
test_cases,
verbose=False,
verbose,
)

# clean up onnx file
Expand All @@ -135,8 +137,10 @@ def run(


class TestGeluParity(unittest.TestCase):
verbose = False
optimized = True

def setUp(self):
self.optimized = True # Change it to False if you want to test parity of non optimized ONNX
self.test_cases = 100 # Number of test cases per test run
self.sequence_length = 2
self.hidden_size = 768
Expand All @@ -159,6 +163,7 @@ def run_test(
formula,
enable_assert=True,
fp32_gelu_op=True,
verbose=False,
):
if float16 and device.type == "cpu": # CPU does not support FP16
return
Expand All @@ -172,11 +177,12 @@ def run_test(
formula,
self.sequence_length,
fp32_gelu_op,
verbose,
)
if enable_assert:
self.assertTrue(num_failure == 0, "Failed: " + test_name)

def run_one(self, optimized, device, hidden_size=768, formula=0):
def run_one(self, optimized, device, hidden_size=768, formula=0, verbose=False):
for batch_size in [4]:
self.run_test(
batch_size,
Expand All @@ -186,6 +192,7 @@ def run_one(self, optimized, device, hidden_size=768, formula=0):
device=device,
formula=formula,
enable_assert=formula in self.formula_must_pass,
verbose=verbose,
)

self.run_test(
Expand All @@ -197,6 +204,7 @@ def run_one(self, optimized, device, hidden_size=768, formula=0):
formula=formula,
enable_assert=formula in self.formula_must_pass,
fp32_gelu_op=True,
verbose=verbose,
)

self.run_test(
Expand All @@ -208,12 +216,13 @@ def run_one(self, optimized, device, hidden_size=768, formula=0):
formula=formula,
enable_assert=formula in self.formula_must_pass,
fp32_gelu_op=False,
verbose=verbose,
)

def test_cpu(self):
cpu = torch.device("cpu")
for i in self.formula_to_test:
self.run_one(self.optimized, cpu, hidden_size=self.hidden_size, formula=i)
self.run_one(self.optimized, cpu, hidden_size=self.hidden_size, formula=i, verbose=self.verbose)

def test_cuda(self):
if not torch.cuda.is_available():
Expand All @@ -223,8 +232,13 @@ def test_cuda(self):
else:
gpu = torch.device("cuda")
for i in self.formula_to_test:
self.run_one(self.optimized, gpu, hidden_size=self.hidden_size, formula=i)
self.run_one(self.optimized, gpu, hidden_size=self.hidden_size, formula=i, verbose=self.verbose)


if __name__ == "__main__":
unittest.main()
args, remaining_args = parse_arguments(namespace_filter=unittest)

TestGeluParity.verbose = args.log_verbose
TestGeluParity.optimized = args.optimize

unittest.main(argv=remaining_args)
Loading

0 comments on commit 099f6d5

Please sign in to comment.