Skip to content

QuoQA-NLP/Ko-conceptual-captions

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 

Repository files navigation

Korean Conceptual Captions Dataset

Introduction

Google's Conceptual Captions Dataset translated into Korean.

Original Dataset Machine Translated Dataset Gold-label Translation Dataset
CC3M KoCC3M -
CC12M KoCC12M -
YFCC100M - -

KoCC3M Dataset Example

image_url english_caption korean_caption
img4 3d digital render of a beautiful female ballet dancer isolated on white background 흰색 바탕에 고립된 아름다운 여성 발레 무용수의 3d 디지털 렌더링입니다.
img1 a bougainvillea with pink flowers on a white background 흰 바탕에 분홍색 꽃들이 그려진 보가인빌라다.
img4 person warms up during a game against american football team. 아메리칸 축구팀과의 경기 중 사람이 몸을 풀고 있다.
img red telephone box in the small village 작은 마을에 빨간 전화기가 걸려 있다.

Goal

Creating machine translated caption of vision-image dataset to further create human supervised gold label translation captions.

References

  • For specifics regarding for CC3M vision-image dataset, please refer to description provided by Google Research.
    @inproceedings{sharma2018conceptual,
      title = {Conceptual Captions: A Cleaned, Hypernymed, Image Alt-text Dataset For Automatic Image Captioning},
      author = {Sharma, Piyush and Ding, Nan and Goodman, Sebastian and Soricut, Radu},
      booktitle = {Proceedings of ACL},
      year = {2018},
    }
    
    @article{ng2020understanding,
      title={Understanding Guided Image Captioning Performance across Domains},
      author={Edwin G. Ng and Bo Pang and Piyush Sharma and Radu Soricut},
      journal={arXiv preprint arXiv:2012.02339},
      year={2020}
    }
    @inproceedings{changpinyo2021cc12m,
      title = {{Conceptual 12M}: Pushing Web-Scale Image-Text Pre-Training To Recognize Long-Tail Visual Concepts},
      author = {Changpinyo, Soravit and Sharma, Piyush and Ding, Nan and Soricut, Radu},
      booktitle = {CVPR},
      year = {2021},
    }
    
    
  • English to Korean Machine Translation with Finetuned Seq2Seq model of QuoQA-NLP/KE-T5-En2Ko-Base