Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix VQD with SPSA optimizer #9538

Merged
merged 19 commits into from
Feb 17, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 14 additions & 13 deletions qiskit/algorithms/eigensolvers/vqd.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# This code is part of Qiskit.
#
# (C) Copyright IBM 2022.
# (C) Copyright IBM 2022, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
Expand Down Expand Up @@ -193,7 +193,6 @@ def compute_eigenvalues(
operator: BaseOperator | PauliSumOp,
aux_operators: ListOrDict[BaseOperator | PauliSumOp] | None = None,
) -> VQDResult:

super().compute_eigenvalues(operator, aux_operators)

# this sets the size of the ansatz, so it must be called before the initial point
Expand Down Expand Up @@ -226,7 +225,6 @@ def compute_eigenvalues(
aux_operators = None

if self.betas is None:

if isinstance(operator, PauliSumOp):
operator = operator.coeff * operator.primitive

Expand Down Expand Up @@ -254,7 +252,6 @@ def compute_eigenvalues(
prev_states = []

for step in range(1, self.k + 1):

# update list of optimal circuits
if step > 1:
prev_states.append(self.ansatz.bind_parameters(result.optimal_points[-1]))
Expand Down Expand Up @@ -365,22 +362,28 @@ def _get_evaluate_energy(
self._check_operator_ansatz(operator)

def evaluate_energy(parameters: np.ndarray) -> np.ndarray | float:
# handle broadcasting: ensure parameters is of shape [array, array, ...]
if len(parameters.shape) == 1:
parameters = np.reshape(parameters, (-1, num_parameters))
batch_size = len(parameters)

estimator_job = self.estimator.run(
circuits=[self.ansatz], observables=[operator], parameter_values=[parameters]
batch_size * [self.ansatz], batch_size * [operator], parameters
)

total_cost = 0
total_cost = np.zeros(batch_size)

if step > 1:
# compute overlap cost
batched_prev_states = [state for state in prev_states for _ in range(batch_size)]
fidelity_job = self.fidelity.run(
[self.ansatz] * (step - 1),
prev_states,
[parameters] * (step - 1),
batch_size * [self.ansatz] * (step - 1),
batched_prev_states,
np.tile(parameters, (step - 1, 1)),
)

costs = fidelity_job.result().fidelities

costs = np.reshape(costs, (step - 1, -1))
for state, cost in enumerate(costs):
total_cost += np.real(betas[state] * cost)

Expand All @@ -394,7 +397,7 @@ def evaluate_energy(parameters: np.ndarray) -> np.ndarray | float:

if self.callback is not None:
metadata = estimator_result.metadata
for params, value, meta in zip([parameters], values, metadata):
for params, value, meta in zip(parameters, values, metadata):
self._eval_count += 1
self.callback(self._eval_count, params, value, meta, step)
else:
Expand All @@ -406,7 +409,6 @@ def evaluate_energy(parameters: np.ndarray) -> np.ndarray | float:

@staticmethod
def _build_vqd_result() -> VQDResult:

result = VQDResult()
result.optimal_points = []
result.optimal_parameters = []
Expand All @@ -420,7 +422,6 @@ def _build_vqd_result() -> VQDResult:

@staticmethod
def _update_vqd_result(result, opt_result, eval_time, ansatz) -> VQDResult:

result.optimal_points.append(opt_result.x)
result.optimal_parameters.append(dict(zip(ansatz.parameters, opt_result.x)))
result.optimal_values.append(opt_result.fun)
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
---
fixes:
- |
Fixed a bug in the :class:`~.eigensolvers.VQD` algorithm where
the energy evaluation function could not process batches of parameters, making it
incompatible with optimizers with ``max_evals_grouped>1``.
See `#9500 <https://github.com/Qiskit/qiskit-terra/issues/9500>`__.
20 changes: 14 additions & 6 deletions test/python/algorithms/eigensolvers/test_vqd.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,13 +19,9 @@
from ddt import data, ddt

from qiskit import QuantumCircuit
from qiskit.algorithms.eigensolvers import VQD
from qiskit.algorithms.eigensolvers import VQD, VQDResult
from qiskit.algorithms import AlgorithmError
from qiskit.algorithms.optimizers import (
COBYLA,
L_BFGS_B,
SLSQP,
)
from qiskit.algorithms.optimizers import COBYLA, L_BFGS_B, SLSQP, SPSA
from qiskit.algorithms.state_fidelities import ComputeUncompute
from qiskit.circuit.library import TwoLocal, RealAmplitudes
from qiskit.opflow import PauliSumOp
Expand Down Expand Up @@ -207,6 +203,7 @@ def store_intermediate_result(eval_count, parameters, mean, metadata, step):
@data(H2_PAULI, H2_OP, H2_SPARSE_PAULI)
def test_vqd_optimizer(self, op):
"""Test running same VQD twice to re-use optimizer, then switch optimizer"""

vqd = VQD(
estimator=self.estimator,
fidelity=self.fidelity,
Expand All @@ -231,6 +228,17 @@ def run_check():
vqd.optimizer = L_BFGS_B()
run_check()

with self.subTest("Batched optimizer replace"):
vqd.optimizer = SLSQP(maxiter=60, max_evals_grouped=10)
run_check()

with self.subTest("SPSA replace"):
# SPSA takes too long to converge, so we will
# only check that it runs with no errors.
vqd.optimizer = SPSA(maxiter=5, learning_rate=0.01, perturbation=0.01)
result = vqd.compute_eigenvalues(operator=op)
self.assertIsInstance(result, VQDResult)

@data(H2_PAULI, H2_OP, H2_SPARSE_PAULI)
def test_aux_operators_list(self, op):
"""Test list-based aux_operators."""
Expand Down