-
Notifications
You must be signed in to change notification settings - Fork 2.4k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Oxidize SabreLayout pass #9116
Oxidize SabreLayout pass #9116
Conversation
This commit modifies the SabreLayout pass when run without the routing_pass argument to run primarily in Rust. This builds on top of the rust version of SabreSwap previously added in Qiskit#7977, Qiskit#8388, and Qiskit#8572. Internally, when the routing_pass argument is not set SabreLayout will perform the full sabre algorithm both layout selection and final swap mapping in rust and return the selected initial layout, the final layout, the toplogical sorting used to traverse the circuit, and a SwapMap for any swaps inserted. This is then used to build the output circuit in place of running separate layout and routing passes. The preset pass managers are updated to handle the new combined layout and routing mode of operation for SabreLayout. The routing stage to the preset pass managers remains intact, it will just operate as if a perfect layout was selected and skip SabreSwap because the circuit is already matching the connectivity constraints. Besides just operating more quickly because the heavy lifting of the algorithm operates more efficiently in a compiled language, doing this in rust also lets change our parallelization model for running multiple seed in Sabre. Just as in Qiskit#8572 we added support for SabreSwap to run multiple parallel trials with different seeds this commit adds a layout_trials argument to SabreLayout to try multiple seeds in parallel. When this is used it parallelizes at the outer layer for each layout/routing combination and the total minimal swap count seed is used. So for example if you set swap_trials=5 and layout_trails=5 that will run 5 tasks in the threadpool with 5 different seeds for the outer layout run. Inside that every time sabre swap is run (which will be multiple times as part of layout plus the final routing run) it tries 5 different seeds for each execution serially inside that parallel task. This should hopefully further improve the quality of the transpiler output and better match expectations for users who were previously calling transpile() multiple times to emulate this behavior. Implements Qiskit#9090
Thank you for opening a new pull request. Before your PR can be merged it will first need to pass continuous integration tests and be reviewed. Sometimes the review process can be slow, so please be patient. While you're waiting, please feel free to review other open PRs. While only a subset of people are authorized to approve pull requests for merging, everyone is encouraged to review open pull requests. Doing reviews helps reduce the burden on the core team and helps make the project's code better for everyone. One or more of the the following people are requested to review this:
|
Previously this PR was using copy() to copy the coupling map before we mutated it to be symmetric (a requirement for the sabre algorithm). However, this modification of the object was leaking out causing test failures. This commit switches it to a deepcopy to ensure there are no shared references (and a comment added to explain it's needed).
This PR branch modifies the default behavior of the SabreLayout pass so it is now a transformation pass that computes a layout, applies it, and then performs routing. This means when using sabre layout in a custom pass manager we no longer need to embed a layout after computing the layout. The failing unitary synthesis tests were using a custom pass manager and trying to apply the layout again after SabreLayout already did. This commit just removes this now unecessary steps from the test code.
Now that the routing stage is integrated into the SabreLayout pass we should be running the BarrierBeforeMeasurement pass prior to layout in the preset pass managers instead of before routing. The goal of the pass is to prevent the routing algorithms for accidentally reusing a qubit after a final measurement which would be invalid by inserting a barrier before the measurements to ensure all qubits are swap mapped prior to adding the measurements during routing. While this might not strictly be necessary (it didn't affect any test output) it feels like best practice to ensure we're doing this prior to potentially routing to prevent issues.
For reproducible results with a fixed seed this commit sets a fixed number of layout_trials for the SabreLayout pass in the preset pass managers. If we did not set a fixed value than the output of the transpiler with a fixed seed will vary based on the number of physical cores that is running the compilation. To start optimization levels 0 and 1 use 5, level 2 uses 10, and level 3 uses 20 which matches the swap_trials argument we used. This is just a starting point, we can adjust these values later if needed.
This commit updates the tests which are checking exact layouts with a fixed seed when running SabreLayout. The changes to SabreLayout breaks exact seed reproducibility from the earlier version of the pass. So we need to update these tests for their new layout assignment from the improved pass. One exception is a test which was trying to assert that transpile() preserves a swap if it's in the basis set. However, the new layout and routing output from SabreLayout for that test was resulting in all the swaps getting optimized away at optimization level 3 (resulting in 13 cx gates instead of ~4 cx gates and 5 swaps before, which would be more efficient on real hardware). So the test was removed and only run at lower optimziation levels.
Hmm, I did an initial run of asv benchmarks and it looks quite bad. I was expecting a runtime performance hit because we're doing 5-20x more work in this PR (I'm actually happy that things like the 50x20 qv benchmark are only ~3x wose runtime instead of 20x worse, as we're running sabre layout 20 times with this PR). But the depth increase is more concerning as the expectation was that the swap counts should shrink in general (ignoring differences caused by changing rng seeding) as we're picking the best overall result from multiple runs. It should result in a 6.5x depth increase. I will do more investigations to try and track down what's going on.
|
The dedicated tests for SabreLayout were not running a fixed number of trials. This was causing a different layout to be returned in tests when run across multiple systems as the number of trials defaults to the number of physical CPUs. This commit fixes the trial count to the number of cores on the local system where the layout was updated. This should fix the non-determinism in the tests causing failures in CI and on different local systems.
Pull Request Test Coverage Report for Build 3647952476
💛 - Coveralls |
If there is only a single layout trial being run we don't have to worry about trying to do too much work in parallel at once by parallelizing the inner sabre swap execution. This commit updates the threading logic to enable running the inner sabre swap trials in parallel if there is only a single layout trial.
This commit corrects a bug in the PR branch that was caused by applying the selected initial layout in a trial to the swapped order node list. This was causing unexpected results when applying the circuit because the intent was to apply it only to the original input not the reversed input.
In the case we're evaluating the layout trials serially instead of in a parallel iterator we don't need to clone the dag nodes list. This is because nothing will be modifying it in parallel, so we don't need a thread local copy. Each call to layout_trial() will keep the dag nodes vector intact (see previous commit for fixing this) so it can just be passed by reference if there are no parallel threads involved.
This commit fixes an issue prevent seed randomization when no seed is specified. On subsequent uses of a pass SabreLayout would not randomize the seed between runs because it was setting the seed to instance state. This commit fixes this issue by relying on initializing the RNG from entropy each time run() is called if no user specified seed is provided.
This commit fixes the routing run to run from a trivial layout instead of the initial layout. By the time we do final routing for a trial we've already applied the selected initial layout to the SabreDAG. So the correct layout to use for running final swap mapping is a trivial layout where logical bit 0 is at physical bit 0. Using initial layout twice means we end up mapping more than is needed resulting in incorrect results.
Looking at profiles for running the new SabreLayout pass, as expected the runtime of the rust SabreSwap routines is dominating. This is because we've basically serialized the sabre swap routines and are running multiple seed trials. As an experiment this commit sets the inner SabreSwap routines to run in parallel too. Since the rayon algorithm uses a work stealing algorithm this hopefully shouldn't cause too much extra overhead, especially because the layout trials are quite fast. This ideally means we're just scheduling each sabre swap trial in a big parallel work queue and rayon does the rest of the magic to figure out how to execute things. Initial testing is showing an improvement for large circuits and a more modest improvement for more modest circuits.
This commit adds a new argument, skip_routing, to the SabreLayout constructor. The intent of this new option is to enable mixing custom routing_method user arguments with SabreLayout in it's new accelerated mode of operation. In the earlier commits no matter what users specified the preset pass manager construction would use sabreswap for routing as it was run internally as part of layout. This meant doing something like: transpile(qc, backend, routing_method='stochastic') would really run SabreSwap which is clearly not the user intent. To provide the layout benefits with multiple seed trials this new argument allows disabling the application of the routing found. This comes with a runtime penalty because effectively we end up running routing twice and only using one of the results. But for custom user provided methods or plugins this seems like a reasonable tradeoff.
In Qiskit#9132 we updated the random seed parameters in the rust code for sabre swap to make the seed optional and default to initializing from entropy if it's not specified. This commit updates the usage to account for this change on main.
This commit adds a new constructor method to the NLayout class that builds an NLayout object from just a logic_to_phys Vec. This constructor can be accessed from either rust or python (although it's not as efficient from Python). This is used to simplify some of the SabreLayout rust code that was doing this inline manually.
This commit moves the code the optimized SabreLayout pass was using to embed the found layout from the Rust code into a method. This will make it easier to refactor later if a more efficient pass manager path is added.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Looks good to me! Reviewed both Python and Rust. Will approve after comments are addressed.
This commit removes an unnecessary else branch in the SabreLayout.run() code to make it slightly easier to read. At the same time some comments are updated to better explain the logic of the code.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM!
* Oxidize SabreLayout pass This commit modifies the SabreLayout pass when run without the routing_pass argument to run primarily in Rust. This builds on top of the rust version of SabreSwap previously added in Qiskit#7977, Qiskit#8388, and Qiskit#8572. Internally, when the routing_pass argument is not set SabreLayout will perform the full sabre algorithm both layout selection and final swap mapping in rust and return the selected initial layout, the final layout, the toplogical sorting used to traverse the circuit, and a SwapMap for any swaps inserted. This is then used to build the output circuit in place of running separate layout and routing passes. The preset pass managers are updated to handle the new combined layout and routing mode of operation for SabreLayout. The routing stage to the preset pass managers remains intact, it will just operate as if a perfect layout was selected and skip SabreSwap because the circuit is already matching the connectivity constraints. Besides just operating more quickly because the heavy lifting of the algorithm operates more efficiently in a compiled language, doing this in rust also lets change our parallelization model for running multiple seed in Sabre. Just as in Qiskit#8572 we added support for SabreSwap to run multiple parallel trials with different seeds this commit adds a layout_trials argument to SabreLayout to try multiple seeds in parallel. When this is used it parallelizes at the outer layer for each layout/routing combination and the total minimal swap count seed is used. So for example if you set swap_trials=5 and layout_trails=5 that will run 5 tasks in the threadpool with 5 different seeds for the outer layout run. Inside that every time sabre swap is run (which will be multiple times as part of layout plus the final routing run) it tries 5 different seeds for each execution serially inside that parallel task. This should hopefully further improve the quality of the transpiler output and better match expectations for users who were previously calling transpile() multiple times to emulate this behavior. Implements Qiskit#9090 * Use deepcopy for coupling map copy Previously this PR was using copy() to copy the coupling map before we mutated it to be symmetric (a requirement for the sabre algorithm). However, this modification of the object was leaking out causing test failures. This commit switches it to a deepcopy to ensure there are no shared references (and a comment added to explain it's needed). * Fix failing unitary synthesis tests This PR branch modifies the default behavior of the SabreLayout pass so it is now a transformation pass that computes a layout, applies it, and then performs routing. This means when using sabre layout in a custom pass manager we no longer need to embed a layout after computing the layout. The failing unitary synthesis tests were using a custom pass manager and trying to apply the layout again after SabreLayout already did. This commit just removes this now unecessary steps from the test code. * Add release note * Run BarrierBeforeMeasurement before new SabreLayout Now that the routing stage is integrated into the SabreLayout pass we should be running the BarrierBeforeMeasurement pass prior to layout in the preset pass managers instead of before routing. The goal of the pass is to prevent the routing algorithms for accidentally reusing a qubit after a final measurement which would be invalid by inserting a barrier before the measurements to ensure all qubits are swap mapped prior to adding the measurements during routing. While this might not strictly be necessary (it didn't affect any test output) it feels like best practice to ensure we're doing this prior to potentially routing to prevent issues. * Improve docstrings * Set a fixed number of layout trials in preset pass managers For reproducible results with a fixed seed this commit sets a fixed number of layout_trials for the SabreLayout pass in the preset pass managers. If we did not set a fixed value than the output of the transpiler with a fixed seed will vary based on the number of physical cores that is running the compilation. To start optimization levels 0 and 1 use 5, level 2 uses 10, and level 3 uses 20 which matches the swap_trials argument we used. This is just a starting point, we can adjust these values later if needed. * Update tests for layout changes This commit updates the tests which are checking exact layouts with a fixed seed when running SabreLayout. The changes to SabreLayout breaks exact seed reproducibility from the earlier version of the pass. So we need to update these tests for their new layout assignment from the improved pass. One exception is a test which was trying to assert that transpile() preserves a swap if it's in the basis set. However, the new layout and routing output from SabreLayout for that test was resulting in all the swaps getting optimized away at optimization level 3 (resulting in 13 cx gates instead of ~4 cx gates and 5 swaps before, which would be more efficient on real hardware). So the test was removed and only run at lower optimziation levels. * Set a fixed number of layout trials in SabreLayout tests The dedicated tests for SabreLayout were not running a fixed number of trials. This was causing a different layout to be returned in tests when run across multiple systems as the number of trials defaults to the number of physical CPUs. This commit fixes the trial count to the number of cores on the local system where the layout was updated. This should fix the non-determinism in the tests causing failures in CI and on different local systems. * Run SabreSwap in parallel if only a single layout trial If there is only a single layout trial being run we don't have to worry about trying to do too much work in parallel at once by parallelizing the inner sabre swap execution. This commit updates the threading logic to enable running the inner sabre swap trials in parallel if there is only a single layout trial. * Remove duplicated SabreDAG creation * Correctly apply selected layout on dag nodes This commit corrects a bug in the PR branch that was caused by applying the selected initial layout in a trial to the swapped order node list. This was causing unexpected results when applying the circuit because the intent was to apply it only to the original input not the reversed input. * Remove unnecessary clone from serial layout trials In the case we're evaluating the layout trials serially instead of in a parallel iterator we don't need to clone the dag nodes list. This is because nothing will be modifying it in parallel, so we don't need a thread local copy. Each call to layout_trial() will keep the dag nodes vector intact (see previous commit for fixing this) so it can just be passed by reference if there are no parallel threads involved. * Fix seed setup when no user seed specified This commit fixes an issue prevent seed randomization when no seed is specified. On subsequent uses of a pass SabreLayout would not randomize the seed between runs because it was setting the seed to instance state. This commit fixes this issue by relying on initializing the RNG from entropy each time run() is called if no user specified seed is provided. * Start from trivial layout for routing stage This commit fixes the routing run to run from a trivial layout instead of the initial layout. By the time we do final routing for a trial we've already applied the selected initial layout to the SabreDAG. So the correct layout to use for running final swap mapping is a trivial layout where logical bit 0 is at physical bit 0. Using initial layout twice means we end up mapping more than is needed resulting in incorrect results. * Revert "Correctly apply selected layout on dag nodes" This change was incorrect, the output was already in the correct order and this was causing the behavior it strived to fix. This commit reverts the addition of the extra mem::swap() call to fix things. This reverts commit d98ef6c. * Deduplicate NLayout trivial layout creation This commit deduplicates the trivial layout generation for the NLayout class. Previously there were a few places both in rust and python that sabre layout was manually generating a trivial NLayout object. THis commit adds a static method to the NLayout class that allows both Python and Rust to easily create a new trivial NLayout object instead of manually creating the object. * Fix fixed layout tests after updates Since more recent commits fixed a few bugs in the behavior of the SabreLayout pass, the previously updated fixed layout tests were no longer correct. This commit updates the tests which were now failing because the layout changed again after fixing bugs in the new pass code. * Try nesting parallelism in the sabres Looking at profiles for running the new SabreLayout pass, as expected the runtime of the rust SabreSwap routines is dominating. This is because we've basically serialized the sabre swap routines and are running multiple seed trials. As an experiment this commit sets the inner SabreSwap routines to run in parallel too. Since the rayon algorithm uses a work stealing algorithm this hopefully shouldn't cause too much extra overhead, especially because the layout trials are quite fast. This ideally means we're just scheduling each sabre swap trial in a big parallel work queue and rayon does the rest of the magic to figure out how to execute things. Initial testing is showing an improvement for large circuits and a more modest improvement for more modest circuits. * Add skip_routing argument to preserve custom user provided routing This commit adds a new argument, skip_routing, to the SabreLayout constructor. The intent of this new option is to enable mixing custom routing_method user arguments with SabreLayout in it's new accelerated mode of operation. In the earlier commits no matter what users specified the preset pass manager construction would use sabreswap for routing as it was run internally as part of layout. This meant doing something like: transpile(qc, backend, routing_method='stochastic') would really run SabreSwap which is clearly not the user intent. To provide the layout benefits with multiple seed trials this new argument allows disabling the application of the routing found. This comes with a runtime penalty because effectively we end up running routing twice and only using one of the results. But for custom user provided methods or plugins this seems like a reasonable tradeoff. * Fix typo in docstring * Update random seed usage in rust code In Qiskit#9132 we updated the random seed parameters in the rust code for sabre swap to make the seed optional and default to initializing from entropy if it's not specified. This commit updates the usage to account for this change on main. * s/retworkx/rustworkx/g * Add alternate constructor for NLayout from a logic_to_phys vec This commit adds a new constructor method to the NLayout class that builds an NLayout object from just a logic_to_phys Vec. This constructor can be accessed from either rust or python (although it's not as efficient from Python). This is used to simplify some of the SabreLayout rust code that was doing this inline manually. * Move layout embedding into a method This commit moves the code the optimized SabreLayout pass was using to embed the found layout from the Rust code into a method. This will make it easier to refactor later if a more efficient pass manager path is added. * Simplify pass logic and update comments This commit removes an unnecessary else branch in the SabreLayout.run() code to make it slightly easier to read. At the same time some comments are updated to better explain the logic of the code. Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
Summary
This commit modifies the SabreLayout pass when run without the routing_pass argument to run primarily in Rust. This builds on top of the rust version of SabreSwap previously added in #7977, #8388, and #8572. Internally, when the routing_pass argument is not set SabreLayout will perform the full sabre algorithm both layout selection and final swap mapping in rust and return the selected initial layout, the final layout, the toplogical sorting used to traverse the circuit, and a SwapMap for any swaps inserted. This is then used to build the output circuit in place of running separate layout and routing passes. The preset pass managers are updated to handle the new combined layout and routing mode of operation for SabreLayout. The routing stage to the preset pass managers remains intact, it will just operate as if a perfect layout was selected and skip SabreSwap because the circuit is already matching the connectivity constraints.
Besides just operating more quickly because the heavy lifting of the algorithm operates more efficiently in a compiled language, doing this in rust also lets change our parallelization model for running multiple seed in Sabre. Just as in #8572 we added support for SabreSwap to run multiple parallel trials with different seeds this commit adds a layout_trials argument to SabreLayout to try multiple seeds in parallel. When this is used it parallelizes at the outer layer for each layout/routing combination and the total minimal swap count seed is used. So for example if you set swap_trials=5 and layout_trails=5 that will run 5 tasks in the threadpool with 5 different seeds for the outer layout run. Inside that every time sabre swap is run (which will be multiple times as part of layout plus the final routing run) it tries 5 different seeds for each execution serially inside that parallel task. This should hopefully further improve the quality of the transpiler output and better match expectations for users who were previously calling transpile() multiple times to emulate this behavior.
Details and comments
Implements #9090
TODO: