Skip to content

Commit

Permalink
Fix the AmplitudeEstimator algorithms for primitive usage (#9394)
Browse files Browse the repository at this point in the history
* Fix the Amplitude Estimation algorithms with primitives

* fix bernoulli tests

Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
  • Loading branch information
Cryoris and mergify[bot] authored Jan 20, 2023
1 parent 756bb11 commit b8dc8a7
Show file tree
Hide file tree
Showing 7 changed files with 42 additions and 56 deletions.
9 changes: 3 additions & 6 deletions qiskit/algorithms/amplitude_estimators/ae.py
Original file line number Diff line number Diff line change
Expand Up @@ -387,15 +387,12 @@ def estimate(self, estimation_problem: EstimationProblem) -> "AmplitudeEstimatio

shots = ret.metadata[0].get("shots")
if shots is None:
result.circuit_results = {
np.binary_repr(k, circuit.num_qubits): v
for k, v in ret.quasi_dists[0].items()
}
result.circuit_results = ret.quasi_dists[0].binary_probabilities()
shots = 1
else:
result.circuit_results = {
np.binary_repr(k, circuit.num_qubits): round(v * shots)
for k, v in ret.quasi_dists[0].items()
k: round(v * shots)
for k, v in ret.quasi_dists[0].binary_probabilities().items()
}

# store shots
Expand Down
16 changes: 0 additions & 16 deletions qiskit/algorithms/amplitude_estimators/ae_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,22 +20,6 @@
# pylint: disable=invalid-name


def _probabilities_from_sampler_result(num_qubits, result, estimation_problem):
"""calculate probabilities from sampler result"""
prob = 0
for bit, probabilities in result.quasi_dists[0].items():
i = int(bit)
# get bitstring of objective qubits
full_state = bin(i)[2:].zfill(num_qubits)[::-1]
state = "".join([full_state[i] for i in estimation_problem.objective_qubits])

# check if it is a good state
if estimation_problem.is_good_state(state[::-1]):
prob += probabilities

return prob


def bisect_max(f, a, b, steps=50, minwidth=1e-12, retval=False):
"""Find the maximum of the real-valued function f in the interval [a, b] using bisection.
Expand Down
11 changes: 7 additions & 4 deletions qiskit/algorithms/amplitude_estimators/fae.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,6 @@

from .amplitude_estimator import AmplitudeEstimator, AmplitudeEstimatorResult
from .estimation_problem import EstimationProblem
from .ae_utils import _probabilities_from_sampler_result


class FasterAmplitudeEstimation(AmplitudeEstimator):
Expand Down Expand Up @@ -156,10 +155,14 @@ def _cos_estimate(self, estimation_problem, k, shots):
if shots is None:
shots = 1
self._num_oracle_calls += (2 * k + 1) * shots

# sum over all probabilities where the objective qubits are 1
prob = _probabilities_from_sampler_result(
circuit.num_qubits, result, estimation_problem
)
prob = 0
for bit, probabilities in result.quasi_dists[0].binary_probabilities().items():
# check if it is a good state
if estimation_problem.is_good_state(bit):
prob += probabilities

cos_estimate = 1 - 2 * prob
elif self._quantum_instance.is_statevector:
circuit = self.construct_circuit(estimation_problem, k, measurement=False)
Expand Down
16 changes: 7 additions & 9 deletions qiskit/algorithms/amplitude_estimators/iae.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,6 @@

from .amplitude_estimator import AmplitudeEstimator, AmplitudeEstimatorResult
from .estimation_problem import EstimationProblem
from .ae_utils import _probabilities_from_sampler_result
from ..exceptions import AlgorithmError


Expand Down Expand Up @@ -426,12 +425,11 @@ def estimate(
) from exc

# calculate the probability of measuring '1'
prob = _probabilities_from_sampler_result(
circuit.num_qubits, ret, estimation_problem
)
prob = cast(
float, prob
) # tell MyPy it's a float and not Tuple[int, float ]
prob = 0.0
for bit, probabilities in ret.quasi_dists[0].binary_probabilities().items():
# check if it is a good state
if estimation_problem.is_good_state(bit):
prob += probabilities

a_confidence_interval = [prob, prob] # type: list[float]
a_intervals.append(a_confidence_interval)
Expand All @@ -444,8 +442,8 @@ def estimate(
break

counts = {
np.binary_repr(k, circuit.num_qubits): round(v * shots)
for k, v in ret.quasi_dists[0].items()
k: round(v * shots)
for k, v in ret.quasi_dists[0].binary_probabilities().items()
}

# calculate the probability of measuring '1', 'prob' is a_i in the paper
Expand Down
13 changes: 5 additions & 8 deletions qiskit/algorithms/amplitude_estimators/mlae.py
Original file line number Diff line number Diff line change
Expand Up @@ -364,19 +364,16 @@ def estimate(
result.circuit_results = []
shots = ret.metadata[0].get("shots")
if shots is None:
for i, quasi_dist in enumerate(ret.quasi_dists):
circuit_result = {
np.binary_repr(k, circuits[i].num_qubits): v
for k, v in quasi_dist.items()
}
for quasi_dist in ret.quasi_dists:
circuit_result = quasi_dist.binary_probabilities()
result.circuit_results.append(circuit_result)
shots = 1
else:
# get counts and construct MLE input
for circuit in circuits:
for quasi_dist in ret.quasi_dists:
counts = {
np.binary_repr(k, circuit.num_qubits): round(v * shots)
for k, v in ret.quasi_dists[0].items()
k: round(v * shots)
for k, v in quasi_dist.binary_probabilities().items()
}
result.circuit_results.append(counts)

Expand Down
7 changes: 7 additions & 0 deletions releasenotes/notes/fix-ae-algorithms-1c0a43c596766cb3.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
---
fixes:
- |
Fix the amplitude estimation algorithms in :mod:`.amplitude_estimators` for the usage
with the :class:`.BaseSampler` primitive. Previously, the measurements results were
expanded to more bits than actually measured which, for oracles with more than one qubit,
led to potential errors in the detection of the "good" quantum states for oracles.
26 changes: 13 additions & 13 deletions test/python/algorithms/test_amplitude_estimators.py
Original file line number Diff line number Diff line change
Expand Up @@ -196,21 +196,21 @@ def test_qasm(self, prob, shots, qae, expect):

@idata(
[
[0.2, 100, AmplitudeEstimation(4), {"estimation": 0.500000, "mle": 0.562783}],
[0.2, 100, AmplitudeEstimation(4), {"estimation": 0.14644, "mle": 0.198783}],
[0.0, 1000, AmplitudeEstimation(2), {"estimation": 0.0, "mle": 0.0}],
[
0.2,
100,
MaximumLikelihoodAmplitudeEstimation([0, 1, 2, 4, 8]),
{"estimation": 0.474790},
{"estimation": 0.200308},
],
[0.8, 10, IterativeAmplitudeEstimation(0.1, 0.05), {"estimation": 0.811711}],
[0.2, 1000, FasterAmplitudeEstimation(0.1, 3, rescale=False), {"estimation": 0.199073}],
[0.2, 1000, FasterAmplitudeEstimation(0.1, 3, rescale=False), {"estimation": 0.198640}],
[
0.12,
100,
FasterAmplitudeEstimation(0.01, 3, rescale=False),
{"estimation": 0.120016},
{"estimation": 0.120017},
],
]
)
Expand Down Expand Up @@ -422,10 +422,10 @@ def test_statevector(self, n, qae, expect):

@idata(
[
[2, AmplitudeEstimation(2), {"estimation": 0.5, "mle": 0.270290}],
[4, MaximumLikelihoodAmplitudeEstimation(4), {"estimation": 0.0}],
[3, IterativeAmplitudeEstimation(0.1, 0.1), {"estimation": 0.0}],
[3, FasterAmplitudeEstimation(0.01, 1), {"estimation": 0.017687}],
[2, AmplitudeEstimation(2), {"estimation": 0.5, "mle": 0.2702}],
[4, MaximumLikelihoodAmplitudeEstimation(4), {"estimation": 0.2725}],
[3, IterativeAmplitudeEstimation(0.1, 0.1), {"estimation": 0.2721}],
[3, FasterAmplitudeEstimation(0.01, 1), {"estimation": 0.2792}],
]
)
@unpack
Expand All @@ -444,7 +444,7 @@ def test_sampler(self, n, qae, expect):

@idata(
[
[4, 10, AmplitudeEstimation(2), {"estimation": 0.5, "mle": 0.333333}],
[4, 100, AmplitudeEstimation(2), {"estimation": 0.5, "mle": 0.281196}],
[3, 10, MaximumLikelihoodAmplitudeEstimation(2), {"estimation": 0.256878}],
[3, 1000, IterativeAmplitudeEstimation(0.01, 0.01), {"estimation": 0.271790}],
[3, 1000, FasterAmplitudeEstimation(0.1, 4), {"estimation": 0.274168}],
Expand All @@ -465,10 +465,10 @@ def test_qasm(self, n, shots, qae, expect):

@idata(
[
[4, 10, AmplitudeEstimation(2), {"estimation": 0.0, "mle": 0.0}],
[3, 10, MaximumLikelihoodAmplitudeEstimation(2), {"estimation": 0.0}],
[3, 1000, IterativeAmplitudeEstimation(0.01, 0.01), {"estimation": 0.0}],
[3, 1000, FasterAmplitudeEstimation(0.1, 4), {"estimation": 0.000551}],
[4, 1000, AmplitudeEstimation(2), {"estimation": 0.5, "mle": 0.2636}],
[3, 10, MaximumLikelihoodAmplitudeEstimation(2), {"estimation": 0.2904}],
[3, 1000, IterativeAmplitudeEstimation(0.01, 0.01), {"estimation": 0.2706}],
[3, 1000, FasterAmplitudeEstimation(0.1, 4), {"estimation": 0.2764}],
]
)
@unpack
Expand Down

0 comments on commit b8dc8a7

Please sign in to comment.