Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix deterministic measure of stabilizer #2132

Merged
merged 8 commits into from
May 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
---
fixes:
- |
Fix of deterministic measure of stabilizer and change of OpenMP
parallelization of loop
186 changes: 68 additions & 118 deletions src/simulators/stabilizer/clifford.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -456,9 +456,8 @@ bool Clifford::measure_and_update(const uint64_t qubit,

t0 = rX & destabilizer_table_[q].Z(i);
t1 = rZ ^ destabilizer_table_[q].X(i);
t1 ^= t0;

d1 ^= (t0 & d0);
d1 ^= (t0 & (~d0));
d0 ^= t0;
d1 ^= (t0 & t1);

Expand All @@ -475,9 +474,8 @@ bool Clifford::measure_and_update(const uint64_t qubit,

t0 = rX & stabilizer_table_[q].Z(i);
t1 = rZ ^ stabilizer_table_[q].X(i);
t1 ^= t0;

s1 ^= (t0 & s0);
s1 ^= (t0 & (~s0));
s0 ^= t0;
s1 ^= (t0 & t1);

Expand Down Expand Up @@ -515,127 +513,79 @@ bool Clifford::measure_and_update(const uint64_t qubit,
} else {
// Deterministic outcome
uint_t outcome = 0;
Pauli::Pauli<BV::BinaryVector> accum(num_qubits_);
uint_t blocks = destabilizer_phases_.blockLength();

if (blocks < 2) {
auto measure_determinisitic_func = [this, blocks, qubit](AER::int_t q) {
uint_t accumX = 0;
uint_t accumZ = 0;
uint_t exponent_l = 0ull;
uint_t exponent_h = 0ull;
bool accumX_prev = false;
bool accumZ_prev = false;

for (uint_t ib = 0; ib < blocks; ib++) {
uint_t tl, th, add;
uint_t destabilizer_mask = destabilizer_table_[qubit].X(ib);
uint_t exponent_l = 0ull;
uint_t exponent_h = 0ull;

for (uint_t q = 0; q < num_qubits_; q++) {
uint_t tl, th, add;
uint_t accumX = 0ull - (uint_t)accum.X[q];
uint_t accumZ = 0ull - (uint_t)accum.Z[q];

tl = accumX & stabilizer_table_[q].Z(ib);
th = accumZ ^ stabilizer_table_[q].X(ib);

add = tl & exponent_l;
exponent_l ^= tl;
exponent_h ^= add;
exponent_h ^= (tl & th);

tl = stabilizer_table_[q].X(ib) & accumZ;
th = stabilizer_table_[q].Z(ib) ^ accumX;
th ^= tl;

add = tl & exponent_l;
exponent_l ^= tl;
exponent_h ^= add;
exponent_h ^= (tl & th);

add = stabilizer_table_[q].X(ib) & destabilizer_mask;
accumX &= AER::Utils::popcount(add) & 1;
add = stabilizer_table_[q].Z(ib) & destabilizer_mask;
accumZ &= AER::Utils::popcount(add) & 1;

accum.X.setValue((bool)accumX, q);
accum.Z.setValue((bool)accumZ, q);
}
exponent_h ^= stabilizer_phases_(ib);
outcome ^= (exponent_h & destabilizer_mask);

if ((exponent_l & destabilizer_mask) != 0) {
throw std::runtime_error("Clifford: rowsum error");
}
}
} else {
uint_t blockSize = destabilizer_phases_.blockSize();

// loop for cache blocking
for (uint_t ii = 0; ii < blocks; ii++) {
uint_t destabilizer_mask = destabilizer_table_[qubit].X(ii);
if (destabilizer_mask == 0)
continue;

uint_t exponent_l = 0;
uint_t exponent_lc = 0;
uint_t exponent_h = 0;

auto measure_determinisitic_func =
[this, &accum, &exponent_l, &exponent_lc, &exponent_h, blocks,
blockSize, destabilizer_mask, ii](AER::int_t qq) {
uint_t qs = qq * blockSize;
uint_t qe = qs + blockSize;
if (qe > num_qubits_)
qe = num_qubits_;

uint_t local_exponent_l = 0;
uint_t local_exponent_h = 0;

for (uint_t q = qs; q < qe; q++) {
uint_t sX = stabilizer_table_[q].X(ii);
uint_t sZ = stabilizer_table_[q].Z(ii);

uint_t accumX = (0ull - (uint_t)accum.X[q]);
uint_t accumZ = (0ull - (uint_t)accum.Z[q]);

// exponents for this block
uint_t t0, t1;

t0 = accumX & sZ;
t1 = accumZ ^ sX;

local_exponent_h ^= (t0 & local_exponent_l);
local_exponent_l ^= t0;
local_exponent_h ^= (t0 & t1);

t0 = sX & accumZ;
t1 = sZ ^ accumX;
t1 ^= t0;

local_exponent_h ^= (t0 & local_exponent_l);
local_exponent_l ^= t0;
local_exponent_h ^= (t0 & t1);

// update accum
accumX &= AER::Utils::popcount(sX & destabilizer_mask) & 1;
accum.X.setValue((accumX != 0), q);
accumZ &= AER::Utils::popcount(sZ & destabilizer_mask) & 1;
accum.Z.setValue((accumZ != 0), q);
}

#pragma omp atomic
exponent_lc |= local_exponent_l;
#pragma omp atomic
exponent_l ^= local_exponent_l;
#pragma omp atomic
exponent_h ^= local_exponent_h;
};
AER::Utils::apply_omp_parallel_for(
(num_qubits_ > omp_threshold_ && omp_threads_ > 1 && nid == 1), 0,
blocks, measure_determinisitic_func, omp_threads_);

// if exponent_l is 0 and any of local_exponent_l is
// 1, then flip exponent_h
exponent_h ^= (exponent_lc ^ exponent_l);
exponent_h ^= stabilizer_phases_(ii);
outcome ^= (exponent_h & destabilizer_mask);
uint_t sX = stabilizer_table_[q].X(ib) & destabilizer_mask;
uint_t sZ = stabilizer_table_[q].Z(ib) & destabilizer_mask;

// accumulate for 64 bits block
accumX = sX ^ (uint_t)accumX_prev;
accumZ = sZ ^ (uint_t)accumZ_prev;
accumX ^= (accumX << 1);
accumZ ^= (accumZ << 1);
accumX ^= (accumX << 2);
accumZ ^= (accumZ << 2);
accumX ^= (accumX << 4);
accumZ ^= (accumZ << 4);
accumX ^= (accumX << 8);
accumZ ^= (accumZ << 8);
accumX ^= (accumX << 16);
accumZ ^= (accumZ << 16);
accumX ^= (accumX << 32);
accumZ ^= (accumZ << 32);
// store for next iteration
accumX_prev = ((accumX >> 63) & 1) != 0;
accumZ_prev = ((accumZ >> 63) & 1) != 0;
// correct for this iteration
accumX ^= sX;
accumZ ^= sZ;
accumX &= destabilizer_mask;
accumZ &= destabilizer_mask;

tl = accumX & sZ;
th = accumZ ^ sX;

add = tl & exponent_l;
exponent_l ^= tl;
exponent_h ^= add;
exponent_h ^= (tl & th);

tl = sX & accumZ;
th = sZ ^ accumX;

add = tl & (~exponent_l);
exponent_l ^= tl;
exponent_h ^= add;
exponent_h ^= (tl & th);
}
// convert 2-bits x 64 integer into bit count here
return AER::Utils::popcount(exponent_h) * 2 +
AER::Utils::popcount(exponent_l);
};

outcome = AER::Utils::apply_omp_parallel_for_reduction_int(
(num_qubits_ > omp_threshold_ && omp_threads_ > 1 && nid == 1), 0,
num_qubits_, measure_determinisitic_func, omp_threads_);

uint_t stab_h = 0ull;
for (uint_t ib = 0; ib < blocks; ib++) {
stab_h ^= (destabilizer_table_[qubit].X(ib) & stabilizer_phases_(ib));
}
return ((AER::Utils::popcount(outcome) & 1) != 0);
outcome += AER::Utils::popcount(stab_h) * 2;

return ((outcome & 3) == 2);
}
}

Expand Down
32 changes: 32 additions & 0 deletions test/terra/backends/aer_simulator/test_measure.py
Original file line number Diff line number Diff line change
Expand Up @@ -284,6 +284,38 @@ def test_measure_sampling_large_ghz_stabilizer(self, method, device, num_qubits)
targets["1" * num_qubits] = shots / 2
self.assertDictAlmostEqual(counts, targets, delta=delta * shots)

@supported_methods(["stabilizer"])
def test_measure_stablizer_deterministic(self, method, device):
"""Test stabilizer measure for deterministic case"""
backend = self.backend(method=method, device=device)
shots = 10000
qc = QuantumCircuit(5, 1)
qc.h([2, 4])
qc.cx(2, 0)
qc.s(0)
qc.cx(4, 2)
qc.h(0)
qc.cx(2, 3)
qc.s(4)
qc.cx(1, 0)
qc.h([3, 4])
qc.cx(3, 2)
qc.h(3)
qc.cx(0, 3)
qc.cx(3, 1)
qc.s(0)
qc.s(1)
qc.h(0)
qc.s(0)
qc.cx(4, 0)
qc.cx(0, 1)
qc.measure(1, 0)
result = backend.run(qc, shots=shots).result()
counts = result.get_counts()
self.assertSuccess(result)

self.assertDictEqual(counts, {"1": shots})

# ---------------------------------------------------------------------
# Test MPS algorithms for measure
# ---------------------------------------------------------------------
Expand Down
Loading