Skip to content

Qengineering/CenterFace-ncnn-Jetson-Nano

Repository files navigation

CenterFace face detection Jetson Nano

output image

CenterFace face detection with the ncnn framework.

License

Paper: https://arxiv.org/ftp/arxiv/papers/1911/1911.03599.pdf

Special made for a bare Raspberry Pi 4 see Q-engineering deep learning examples


Benchmark.

Model framework model size mAP Jetson Nano
2015 MHz
RPi 4 64-OS
1950 MHz
Ultra-Light-Fast ncnn slim-320 320x240 67.1 - FPS 26 FPS
Ultra-Light-Fast ncnn RFB-320 320x240 69.8 - FPS 23 FPS
Ultra-Light-Fast MNN slim-320 320x240 67.1 70 FPS 65 FPS
Ultra-Light-Fast MNN RFB-320 320x240 69.8 60 FPS 56 FPS
Ultra-Light-Fast OpenCV slim-320 320x240 67.1 48 FPS 40 FPS
Ultra-Light-Fast OpenCV RFB-320 320x240 69.8 43 FPS 35 FPS
Ultra-Light-Fast + Landmarks ncnn slim-320 320x240 67.1 50 FPS 24 FPS
LFFD ncnn 5 stage 320x240 88.6 16.4 FPS 4.85 FPS
LFFD ncnn 8 stage 320x240 88.6 11.7 FPS 3.45 FPS
LFFD MNN 5 stage 320x240 88.6 2.6 FPS 2.17 FPS
LFFD MNN 8 stage 320x240 88.6 1.8 FPS 1.49 FPS
CenterFace ncnn - 320x240 93 16.5 FPS 6.8 FPS

Dependencies.

April 4 2021: Adapted for ncnn version 20210322 or later

To run the application, you have to:

  • The Tencent ncnn framework installed. Install ncnn
  • OpenCV 64 bit installed. Install OpenCV 4.5
  • Code::Blocks installed. ($ sudo apt-get install codeblocks)

Installing the app.

To extract and run the network in Code::Blocks
$ mkdir MyDir
$ cd MyDir
$ wget https://github.com/Qengineering/CenterFace-ncnn-Jetson-Nano/archive/refs/heads/main.zip
$ unzip -j master.zip
Remove master.zip, LICENSE and README.md as they are no longer needed.
$ rm master.zip
$ rm LICENSE
$ rm README.md

Your MyDir folder must now look like this:
selfie.jpg
Walks2.mp4
CenterFace_ncnn.cpb
main.cpp
ncnn_centerface.h
ncnn_centerface.cpp
centerface.bin
centerface.param


Running the app.

To run the application load the project file CenterFace_ncnn.cbp in Code::Blocks.
Next, follow the instructions at Hands-On.

By default, the images are resized to 320x240. It gives you a fast, but less accurate result. Commenting on line 8 #define RESIZE will scan the full size of the image, resulting in the most accurate output. However, it will take more processing time depending on the size.


paypal