-
Notifications
You must be signed in to change notification settings - Fork 32
Commit
…evel v0.4.7.0
- Loading branch information
There are no files selected for viewing
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
This file was deleted.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,137 @@ | ||
|
||
# coding: utf-8 | ||
|
||
# In[1]: | ||
|
||
|
||
import psyneulink as pnl | ||
import numpy as np | ||
|
||
|
||
# In[2]: | ||
|
||
|
||
# ECin = pnl.KWTA(size=8, function=pnl.Linear) | ||
# DG = pnl.KWTA(size=400, function=pnl.Linear) | ||
# CA3 = pnl.KWTA(size=80, function=pnl.Linear) | ||
# CA1 = pnl.KWTA(size=100, function=pnl.Linear) | ||
# ECout = pnl.KWTA(size=8, function=pnl.Linear) | ||
ECin = pnl.TransferMechanism(size=8, function=pnl.Linear(), name='ECin') | ||
DG = pnl.TransferMechanism(size=400, function=pnl.Logistic(), name='DG') | ||
CA3 = pnl.TransferMechanism(size=80, function=pnl.Logistic(), name='CA3') | ||
CA1 = pnl.TransferMechanism(size=100, function=pnl.Linear(), name='CA1') | ||
ECout = pnl.TransferMechanism(size=8, function=pnl.Logistic(), name='ECout') | ||
|
||
|
||
# In[3]: | ||
|
||
|
||
def make_mask(in_features, out_features, connectivity): | ||
mask = np.zeros((in_features, out_features)) | ||
rand = np.random.random(mask.shape) | ||
idxs = np.where(rand < connectivity) | ||
mask[idxs[0], idxs[1]] = 1 | ||
return mask | ||
|
||
def make_mat(in_features, out_features, lo, high, mask): | ||
w = np.random.uniform(lo ,high, size=(in_features, out_features)) | ||
w = mask * w | ||
return w | ||
|
||
|
||
# In[4]: | ||
|
||
|
||
ECin_s, ECout_s, DG_s, CA3_s, CA1_s = 8, 8, 400, 80, 100 | ||
|
||
|
||
# In[5]: | ||
|
||
|
||
mask_ECin_DG = make_mask(ECin_s, DG_s, 0.25) | ||
mask_DG_CA3 = make_mask(DG_s, CA3_s, 0.05) | ||
mask_ECin_CA3 = make_mask(ECin_s, CA3_s, 0.25) | ||
|
||
mat_ECin_DG = make_mat(ECin_s, DG_s, 0.25, 0.75, mask_ECin_DG) | ||
mat_DG_CA3 = make_mat(DG_s, CA3_s, 0.89, 0.91, mask_DG_CA3) | ||
mat_ECin_CA3 = make_mat(ECin_s, CA3_s, 0.25, 0.75, mask_ECin_CA3) | ||
|
||
mat_CA3_CA1 = make_mat(CA3_s, CA1_s, 0.25, 0.75, np.ones((CA3_s, CA1_s))) | ||
mat_CA1_ECout = make_mat(CA1_s, ECout_s, 0.25, 0.75, np.ones((CA1_s, ECout_s))) | ||
mat_ECin_CA1 = make_mat(ECin_s, CA1_s, 0.25, 0.75, np.ones((ECin_s, CA1_s))) | ||
|
||
|
||
# In[6]: | ||
|
||
|
||
ECin_to_DG=pnl.MappingProjection(matrix=mat_ECin_DG) | ||
DG_to_CA3=pnl.MappingProjection(matrix=mat_DG_CA3) | ||
ECin_to_CA3=pnl.MappingProjection(matrix=mat_ECin_CA3) | ||
CA3_to_CA1=pnl.MappingProjection(matrix=mat_CA3_CA1) | ||
CA1_to_ECout=pnl.MappingProjection(sender=CA1, receiver=ECout, matrix=mat_CA1_ECout) | ||
ECin_to_CA1=pnl.MappingProjection(sender=ECin, receiver=CA1, matrix=mat_ECin_CA1) | ||
|
||
|
||
# In[7]: | ||
|
||
|
||
proc_ECin_DG = pnl.Process(pathway=[ECin, ECin_to_DG, DG], learning=pnl.ENABLED, learning_rate=0.2) | ||
proc_ECin_CA3 = pnl.Process(pathway=[ECin, ECin_to_CA3, CA3], learning=pnl.ENABLED, learning_rate=0.2) | ||
proc_DG_CA3 = pnl.Process(pathway=[DG, DG_to_CA3, CA3], learning=pnl.ENABLED, learning_rate=0) | ||
proc_CA3_CA1 = pnl.Process(pathway=[CA3, CA3_to_CA1, CA1], learning=pnl.ENABLED, learning_rate=0.05) | ||
proc_CA1_ECout = pnl.Process(pathway=[CA1, ECout], learning=pnl.ENABLED, learning_rate=0.02) | ||
proc_ECin_CA1 = pnl.Process(pathway=[ECin, CA1], learning_rate=0.02) | ||
|
||
|
||
# In[8]: | ||
|
||
|
||
TSP = pnl.System(processes=[proc_ECin_DG, proc_ECin_CA3, proc_DG_CA3, proc_CA3_CA1, proc_CA1_ECout]) | ||
# MSP = pnl.System(processes=[proc_ECin_CA1, proc_CA1_ECout]) | ||
|
||
|
||
# In[9]: | ||
|
||
|
||
TSP.show_graph() | ||
assert True | ||
|
||
# In[10]: | ||
|
||
|
||
## Method for making input | ||
def statistical(): | ||
chars = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I'] | ||
sequence = '' | ||
letters = range(8) | ||
starters = range(0, 8, 2) | ||
enders = range(1, 8, 2) | ||
|
||
## minus phase | ||
idx = np.random.randint(len(starters)) | ||
s = starters[idx] | ||
e = enders[idx] | ||
minus_input, minus_target = np.zeros((8)), np.zeros((8)) | ||
minus_input[s] = 1.0 | ||
minus_target[e] = 1.0 | ||
minus_target[s] = 0.9 | ||
sequence += chars[s] | ||
sequence += chars[e] | ||
|
||
## plus phase | ||
plus_input, plus_target = minus_target, np.zeros((8)) | ||
plus_target[s] = 1 | ||
plus_target[e] = 1 | ||
|
||
return (minus_input, minus_target, plus_input, plus_target) | ||
|
||
|
||
# In[ ]: | ||
|
||
|
||
epochs = 100 | ||
for epoch in range(epochs): | ||
minus_x, minus_y, plus_x, plus_y = statistical() | ||
TSP.run(inputs={ECin:minus_x}, targets={ECout:minus_y}) | ||
## Running the above line of code causes weights to get too large | ||
|