This is simply a note that recognizes a bunch of metaheuristics that I’ve come across throughout my research. This may be of use when attempting to discover new variants or successors.
If you want your algorithm posted here please email me! (link on github profile)
- Original PSO: https://doi.org/10.1109/ICNN.1995.488968
- Original PSO w/ Inertia: https://doi.org/10.1109/ICEC.1998.699146
Known for working well for large-scale optimization problems. May need to consider variable dependencies when splitting dimensionality.
- CPSO-S, CPSO-Sk, CPSO-Hk: https://doi.org/10.1109/TEVC.2004.826069
- CCPSO: https://doi.org/10.1109/CEC.2009.4983126
- DCPSO, MCPSO: https://doi.org/10.1145/3206185.3206199
- RG-DCPSO, RG-MCPSO: submitted but in review.
- MGPSO: https://doi.org/10.1007/s11721-019-00171-0
- CMOPSO: https://doi.org/10.1016/j.ins.2017.10.037
- HTL-PSO: https://doi.org/10.1016/j.neucom.2016.10.001
- MOPSO_TA: https://doi.org/10.1016/j.asoc.2022.108532
- MMOPSO: https://doi.org/10.1016/j.ejor.2015.06.071
- MDEPSO: https://doi.org/10.1007/978-3-540-89694-4_26
- CCMGPSO: Madani, Amirali. "Multi-Guide Particle Swarm Optimization for Large-Scale Multi-Objective Optimization Problems." (2021).
- VaPSO: https://doi.org/10.1016/j.asoc.2021.107299
- MaOPSO/2s-pccs: https://doi.org/10.1109/TCYB.2016.2548239
- MOPSO/GDR: https://doi.org/10.1016/j.asoc.2020.106661
- RMOPSO & DMOPSO: https://doi.org/10.1007/978-3-540-87700-4_75
- MOPSO/DD: https://doi.org/10.1109/TCYB.2019.2922287
- Original GA: http://datajobstest.com/data-science-repo/Genetic-Algorithm-Guide-[Tom-Mathew].pdf
- note: explains the vanilla algorithm, but not the original author(s) of GA.
- CCGA, CCGA-1, CCGA-2: https://doi.org/10.1007/3-540-58484-6_269
- note: this may be the first time cooperative coevolution was introduced
- NSGA-II: https://doi.org/10.1109/4235.996017
- Original DE: https://doi.org/10.1109/NAFIPS.1996.534789
- CoDE-AG: https://doi.org/10.1177%2F1687814019834161
- DECC-RAG: https://doi.org/10.5220/0006903102610268
- CMODE: https://doi.org/10.1109/TCYB.2015.2490669
- CCMODE (constrained): https://doi.org/10.1109/TCYB.2018.2819208
- MLFS-CCDE (for feature selection): https://doi.org/10.1007/s12293-021-00328-7
- NSCCDE: https://doi.org/10.1109/ACCESS.2017.2716111
- NSDE-R: https://doi.org/10.1007/s00158-019-02272-0
- MyO-DEMR: https://doi.org/10.1145/2463372.2463445
- DECOR: https://doi.org/10.1016/j.ins.2017.09.051
- LSMaODE: https://doi.org/10.1109/TCYB.2022.3178929
- MGDE: https://doi.org/10.1007/s10479-022-04641-3
- RODE: https://doi.org/10.1007/s13369-020-04536-0
- MOLG-DE: https://doi.org/10.1016/j.jocs.2022.101746
- GrDE: https://doi.org/10.1109/CEC.2016.7744139
- Original WWO: https://doi.org/10.1016/j.cor.2014.10.008
- SimWWO: https://doi.org/10.1109/CEC.2015.7256974
- Original IWO: https://doi.org/10.1016/j.ecoinf.2006.07.003