Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Introducing TaylorSolution #192

Merged
merged 62 commits into from
Aug 2, 2024
Merged
Show file tree
Hide file tree
Changes from 56 commits
Commits
Show all changes
62 commits
Select commit Hold shift + click to select a range
5565908
Reorganize a bit
PerezHz Apr 3, 2024
555e866
Update DiffEq interface
PerezHz Apr 3, 2024
1c052da
Add TaylorSolution struct
PerezHz Apr 3, 2024
b0b3ce0
wip
PerezHz Apr 4, 2024
1ae4c8d
WIP: update
PerezHz Apr 3, 2024
2158aba
WIP
PerezHz Apr 4, 2024
d73426f
Format
PerezHz Apr 4, 2024
9a2fe14
Update jet transport tests
PerezHz Apr 5, 2024
99e6fa0
Update tests: BigFloats and some taylorize macro tests
PerezHz Apr 5, 2024
c497e40
Update taylorize tests
PerezHz Apr 5, 2024
e60b56b
Update DiffEq interface
PerezHz Apr 5, 2024
f2ef371
Update DiffEq interface
PerezHz Apr 12, 2024
e30dc4f
Update Project.toml
PerezHz Apr 12, 2024
fb4f127
Add callability methods
PerezHz Apr 12, 2024
07703df
Fixes
PerezHz Apr 12, 2024
bca0639
Remove TaylorN constructor method
PerezHz Apr 13, 2024
32b71a0
Update CI (use TaylorSeries branch in fork)
PerezHz Apr 13, 2024
ac0285f
Small fixes
PerezHz Apr 13, 2024
a5e7793
fixes
PerezHz Apr 14, 2024
de4429e
Update ci.yml
PerezHz Apr 14, 2024
ad9b340
Update ci.yml
PerezHz Apr 14, 2024
68e077e
wip: root finding
PerezHz Apr 16, 2024
e997880
wip: root finding
PerezHz Apr 18, 2024
5bbe292
Small fixes in TaylorSolution
PerezHz Apr 18, 2024
d25c884
Root-finding: working version
PerezHz Apr 18, 2024
eb08415
wip: lyapunov
PerezHz Apr 18, 2024
1439604
Working version of taylorinteg_lyap; update tests
PerezHz Apr 18, 2024
0fc14af
Update
PerezHz Apr 18, 2024
36784cc
Uncomment and update remaining taylorize.jl tests
PerezHz Apr 18, 2024
eae1221
Pass dense as a Val{D} to _taylorinteg (helps type-stability via barr…
PerezHz Apr 19, 2024
4999b8b
Add _taylorinteg test
PerezHz Apr 19, 2024
70cc01e
Test with TS branch
PerezHz Apr 20, 2024
14e05f9
Update CI
PerezHz Apr 21, 2024
519543e
Update Aqua tests
PerezHz Apr 21, 2024
b5e43d9
Update ci.yml
PerezHz Apr 24, 2024
a29cd47
Fix handling of backwards integration in DiffEq interface
PerezHz May 12, 2024
2623c88
Update docs
PerezHz May 19, 2024
265975f
Update docs
PerezHz Jun 22, 2024
0a10ac3
Temporarily disable root-finding tests: revert this commit before mer…
PerezHz Jun 22, 2024
d6a1841
Update docstrings
PerezHz Jun 22, 2024
4a20a10
Add error when calling solution with dense=false
PerezHz Jun 22, 2024
30bae8c
Re-enable root-finding tests
PerezHz Jun 22, 2024
f673c2e
Add test for ErrorException when calling solution computed with dense…
PerezHz Jun 24, 2024
20d5fa3
Add diffeq! to improve ODE recursion rule allocs
PerezHz Jun 30, 2024
64f596a
Revert change un runtests.jl
PerezHz Jul 11, 2024
eba5fb4
Merge branch 'main' into jp/solution
PerezHz Jul 25, 2024
e0d7953
Use solcoeff! in jetcoeffs!
PerezHz Jul 25, 2024
442b913
Do not rely on `deepcopy` for polynomial solution saving
PerezHz Jul 25, 2024
23cae6a
Small fixes
PerezHz Jul 25, 2024
3487cec
Fix tests
PerezHz Aug 1, 2024
5873e8b
Address some points of review by @lbenet
PerezHz Aug 1, 2024
1737b32
Fix typo
PerezHz Aug 1, 2024
2aad14e
Add tests
PerezHz Aug 1, 2024
b05d0f4
Remove duplicated file
PerezHz Aug 1, 2024
3019b21
Rename ext/TaylorIntegrationDiffEq.jl -> ext/TaylorIntegrationDiffEqE…
PerezHz Aug 1, 2024
d360531
Uncomment test files
PerezHz Aug 1, 2024
cf90e28
Set dense=true as default
PerezHz Aug 2, 2024
ee88270
Add deprecations
PerezHz Aug 2, 2024
390e371
Bump patch version
PerezHz Aug 2, 2024
3320603
Add deprecation message
PerezHz Aug 2, 2024
6ccfe54
Apply suggestions from code review
PerezHz Aug 2, 2024
839b861
Remove deprecations; bump minor version
PerezHz Aug 2, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ TaylorSeries = "6aa5eb33-94cf-58f4-a9d0-e4b2c4fc25ea"
OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed"

[extensions]
TaylorIntegrationDiffEq = "OrdinaryDiffEq"
TaylorIntegrationDiffEqExt = "OrdinaryDiffEq"

[compat]
Aqua = "0.8"
Expand Down
6 changes: 6 additions & 0 deletions docs/src/api.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,12 @@ lyap_taylorinteg
@taylorize
```

## Exported types

```@docs
TaylorSolution
```

## Internal

```@autodocs
Expand Down
3 changes: 2 additions & 1 deletion docs/src/kepler.md
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,8 @@ We now perform the integration, using a 25 order expansion and
absolute tolerance of ``10^{-20}``.
```@example kepler
using TaylorIntegration, Plots
t, q = taylorinteg(kepler_eqs!, q0, 0.0, 10000*2pi, 25, 1.0e-20, maxsteps=700_000);
sol = taylorinteg(kepler_eqs!, q0, 0.0, 10000*2pi, 25, 1.0e-20, maxsteps=700_000);
t, q = sol.t, sol.x;
t[end], q[end,:]
```

Expand Down
6 changes: 4 additions & 2 deletions docs/src/lorenz_lyapunov.md
Original file line number Diff line number Diff line change
Expand Up @@ -114,12 +114,14 @@ one with the values of the Lyapunov spectrum.

We first carry out the integration computing internally the Jacobian
```@example lorenz
tv, xv, λv = lyap_taylorinteg(lorenz!, x0, t0, tmax, 28, 1e-20, params; maxsteps=2000000);
sol = lyap_taylorinteg(lorenz!, x0, t0, tmax, 28, 1e-20, params; maxsteps=2000000);
tv, xv, λv = sol.t, sol.x, sol.λ
nothing # hide
```
Now, the integration is obtained exploiting `lorenz_jac!`:
```@example lorenz
tv_, xv_, λv_ = lyap_taylorinteg(lorenz!, x0, t0, tmax, 28, 1e-20, params, lorenz_jac!; maxsteps=2000000);
sol_ = lyap_taylorinteg(lorenz!, x0, t0, tmax, 28, 1e-20, params, lorenz_jac!; maxsteps=2000000);
tv_, xv_, λv_ = sol_.t, sol_.x, sol_.λ
nothing # hide
```
In terms of performance the second method is about ~50% faster than the first.
Expand Down
14 changes: 7 additions & 7 deletions docs/src/pendulum.md
Original file line number Diff line number Diff line change
Expand Up @@ -103,7 +103,7 @@ We perform the Taylor integration using the initial condition `x0TN`, during
6 periods of the pendulum (i.e., ``6T``), exploiting multiple dispatch:
```@example pendulum
tv = t0:integstep:tmax # the times at which the solution will be evaluated
xv = taylorinteg(pendulum!, q0TN, tv, order, abstol)
sol = taylorinteg(pendulum!, q0TN, tv, order, abstol)
nothing # hide
```

Expand All @@ -128,19 +128,19 @@ nothing # hide
```

We evaluate the jet at ``\partial U_{x(t)}`` (the boundary of ``U_{x(t)}``) at each
value of the solution vector `xv`; we organize these values such that we can plot
value of the solution array `sol.x`; we organize these values such that we can plot
them later:
```@example pendulum
xjet_plot = map(λ->λ.(ξv), xv[:,1])
pjet_plot = map(λ->λ.(ξv), xv[:,2])
xjet_plot = map(λ->λ.(ξv), sol.x[:,1])
pjet_plot = map(λ->λ.(ξv), sol.x[:,2])
nothing # hide
```
Above, we have exploited the fact that `Array{TaylorN{Float64}}` variables are
callable objects. Now, we evaluate the jet at the nominal solution, which
corresponds to ``\xi=(0,0)``, at each value of the solution vector `xv`:
corresponds to ``\xi=(0,0)``, at each value of the solution vector `sol.x`:
```@example pendulum
x_nom = xv[:,1]()
p_nom = xv[:,2]()
x_nom = sol.x[:,1]()
p_nom = sol.x[:,2]()
nothing # hide
```

Expand Down
11 changes: 6 additions & 5 deletions docs/src/root_finding.md
Original file line number Diff line number Diff line change
Expand Up @@ -124,11 +124,11 @@ for i in 1:nconds
x_ini .= x0 .+ 0.005 .* [0.0, sqrt(rand1)*cos(2pi*rand2), 0.0, sqrt(rand1)*sin(2pi*rand2)]
px!(x_ini, E0) # ensure initial energy is E0

tv_i, xv_i, tvS_i, xvS_i, gvS_i = taylorinteg(henonheiles!, g, x_ini, 0.0, 135.0,
sol_i = taylorinteg(henonheiles!, g, x_ini, 0.0, 135.0,
25, 1e-25, maxsteps=30000);
tvSv[i] = vcat(0.0, tvS_i)
xvSv[i] = vcat(transpose(x_ini), xvS_i)
gvSv[i] = vcat(0.0, gvS_i)
tvSv[i] = vcat(0.0, sol_i.t)
xvSv[i] = vcat(transpose(x_ini), sol_i.x)
gvSv[i] = vcat(0.0, sol_i.gresids)
end
nothing # hide
```
Expand Down Expand Up @@ -202,14 +202,15 @@ nothing # hide

We are now set to carry out the integration.
```@example poincare
tvTN, xvTN, tvSTN, xvSTN, gvSTN = taylorinteg(henonheiles!, g, x0TN, 0.0, 135.0, 25, 1e-25, maxsteps=30000);
solTN = taylorinteg(henonheiles!, g, x0TN, 0.0, 135.0, 25, 1e-25, maxsteps=30000);
nothing # hide
```

We define some auxiliary arrays, and then make an animation with the results for
plotting.
```@example poincare
#some auxiliaries:
tvTN, xvTN, tvSTN, xvSTN, gvSTN = solTN.t, solTN.x, solTN.tevents, solTN.xevents, solTN.gresids
xvSTNaa = Array{Array{TaylorN{Float64},1}}(undef, length(tvSTN)+1 );
xvSTNaa[1] = x0TN
for ind in 2:length(tvSTN)+1
Expand Down
18 changes: 9 additions & 9 deletions docs/src/simple_example.md
Original file line number Diff line number Diff line change
Expand Up @@ -95,24 +95,24 @@ below we shall *try* to compute it up to ``t_\textrm{end}=0.34``; as we shall
see, Taylor's method takes care of this. For
the integration presented below, we use a 25-th series expansion, with
``\epsilon_\textrm{tol} = 10^{-20}``, and compute up to 150
integration steps.
integration steps. The type of the solution returned by `taylorinteg` is [`TaylorSolution`](@ref).

```@example example1
tT, xT = taylorinteg(diffeq, 3.0, 0.0, 0.34, 25, 1e-20, maxsteps=150) ;
sol = taylorinteg(diffeq, 3.0, 0.0, 0.34, 25, 1e-20, maxsteps=150);
```

We first note that the last point of the
calculation does not exceed ``t_\textrm{max}``.
```@example example1
tT[end]
sol.t[end]
```
Increasing the `maxsteps` parameter pushes `tT[end]` closer to ``t_\textrm{max}``
Increasing the `maxsteps` parameter pushes `sol.t[end]` closer to ``t_\textrm{max}``
but it actually does not reach this value.

Figure 1 displays the computed solution as a function of
time, in log scale.
```@example example1
plot(tT, log10.(xT), shape=:circle)
plot(sol.t, log10.(sol.x), shape=:circle)
xlabel!("t")
ylabel!("log10(x(t))")
xlims!(0,0.34)
Expand All @@ -128,8 +128,8 @@ and the analytical solution in terms of time.

```@example example1
exactsol(t, x0) = x0 / (1 - x0 * t)
δxT = abs.(xT .- exactsol.(tT, 3.0)) ./ exactsol.(tT, 3.0);
plot(tT[6:end], log10.(δxT[6:end]), shape=:circle)
δxT = abs.(sol.x .- exactsol.(sol.t, 3.0)) ./ exactsol.(sol.t, 3.0);
plot(sol.t[6:end], log10.(sol.x[6:end]), shape=:circle)
xlabel!("t")
ylabel!("log10(dx(t))")
xlims!(0, 0.4)
Expand All @@ -141,8 +141,8 @@ impose (arbitrarily) a relative accuracy of ``10^{-13}``; the time until
such accuracy is satisfied is given by:
```@example example1
indx = findfirst(δxT .> 1.0e-13);
esol = exactsol(tT[indx-1],3.0);
tT[indx-1], esol, eps(esol)
esol = exactsol(sol.t[indx-1],3.0);
sol.t[indx-1], esol, eps(esol)
```
Note that, the accuracy imposed in terms of the actual value
of the exact solution means that the difference of the computed
Expand Down
6 changes: 3 additions & 3 deletions docs/src/taylorize.md
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@ tf = 10000.0
q0 = [1.3, 0.0]

# The actual integration
t1, x1 = taylorinteg(pendulumNP!, q0, t0, tf, 25, 1e-20, maxsteps=50000); # warm-up run
sol1 = taylorinteg(pendulumNP!, q0, t0, tf, 25, 1e-20, maxsteps=50000); # warm-up run
e1 = @elapsed taylorinteg(pendulumNP!, q0, t0, tf, 25, 1e-20, maxsteps=50000);
all1 = @allocated taylorinteg(pendulumNP!, q0, t0, tf, 25, 1e-20, maxsteps=50000);
e1, all1
Expand Down Expand Up @@ -119,7 +119,7 @@ use the same instruction as above; the default value for the keyword argument `p
is `true`, so we may omit it.

```@example taylorize
t2, x2 = taylorinteg(pendulum!, q0, t0, tf, 25, 1e-20, maxsteps=50000); # warm-up run
sol2 = taylorinteg(pendulum!, q0, t0, tf, 25, 1e-20, maxsteps=50000); # warm-up run
e2 = @elapsed taylorinteg(pendulum!, q0, t0, tf, 25, 1e-20, maxsteps=50000);
all2 = @allocated taylorinteg(pendulum!, q0, t0, tf, 25, 1e-20, maxsteps=50000);
e2, all2
Expand All @@ -132,7 +132,7 @@ e1/e2, all1/all2

We can check that both integrations yield the same results.
```@example taylorize
t1 == t2 && x1 == x2
sol1.t == sol2.t && sol1.x == sol2.x
```

As stated above, in order to allow opting out of using the specialized method
Expand Down
Loading
Loading