Tools for FEM and VEM code
VEM implementation based on:
- The Hitchhiker's Guide to the Virtual Element Method L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo, Mathematical Models and Methods in Applied Sciences 2014 24:08, 1541-1573
FEM implementation based on
-
JuaFEM: https://github.com/KristofferC/JuAFEM.jl.git
-
Logg, Mardal, Wells, Kirby, FIAT: numerical construction of finite element basis functions.
- Continuous Lagrange finite elements of arbitrary order:
ContinuousLagrange(:Shape, order)
where :Shape
= :Triangle, :Quad, :Hexahedron, :Tetrahedron
- VTK saving using
WriteVTK.jl
package.
See examples
directory for more information. Below, a simple Poisson PDE with homogeneous Dirichlet boundary conditions, in a 3D unitary cube.
using jFEMTools
import Tensors: Vec, ⋅
using SparseArrays
import WriteVTK
const jF = jFEMTools
# Problem:
# Δu = f in Ω
# u = 0 in ∂Ω
# We start generating a simple grid with 10x10x10 Hexahedron elements
# on unitary cube. The generator defaults to the unit hyper_cube.
mesh = hyper_rectagle_mesh2(HexahedronCell,(10,10,10))
# ### Initiate finite element function Space
dim = jF.getdim(mesh)
P1 = ContinuousLagrange(:Hexahedron,1)
Wh = FEMFunctionSpace(mesh, P1, 1)
# Declare variables
u_h = TrialFunction(Wh)
#v_h = TestFunction(Wh)
# ### Degrees of freedom
# We create the `DofHandler` and then add a single field called `u_h`.
dh = DofHandler(mesh,[u_h])
# This function returns a sparse matrix with the correct elements stored.
K = jF.create_sparsity_pattern(dh);
# ### Boundary conditions
dbc = Dirichlet(dh, u_h, "boundary", 0.0)
# ### RHS function
f(x::Vec{dim}) where {dim} = 2*π^2*sin(π*x[1])*sin(π*x[2])*sin(π*x[3])
# ### Assembling the linear system
function doassemble(Wh, K::SparseMatrixCSC, dh::jF.DofHandler)
# Allocate the element stiffness matrix and element force vector
# global and local matrices
n_basefuncs = jF.getnbasefunctions(Wh)
Ke = zeros(n_basefuncs, n_basefuncs)
fe = zeros(n_basefuncs)
b = zeros(jF.ndofs(dh))
cell_dofs = Vector{Int}(undef, jF.ndofs_per_cell(dh))
assembler = jF.start_assemble(K, b)
# It is now time to loop over all the cells in our mesh
@inbounds for (cellcount, cell) in enumerate(CellIterator(mesh))
# We recompute local data for each cell
fill!(Ke, 0)
fill!(fe, 0)
jF.reinit!(Wh, cell)
# Loop over all the quadrature points in the cell and
# assemble the contribution to `Ke` and `fe`. The integration weight
# can be queried using `getdetJdV`.
for q_point in 1:jF.getnquadpoints(Wh)
dΩ = jF.getdetJdV(Wh, q_point)
fh = jF.function_value(f, Wh, cell, q_point)
# For each quadrature point we loop over all the (local) shape functions.
# We need the value and gradient of the testfunction `v` and also the gradient
# of the trial function `u`.
for i in 1:n_basefuncs
v = jF.shape_value(Wh, q_point, i)
∇v = jF.shape_gradient(Wh, q_point, i)
fe[i] += fh*v * dΩ
for j in 1:n_basefuncs
∇u = jF.shape_gradient(Wh, q_point, j)
Ke[i, j] += (∇v ⋅ ∇u) * dΩ
end
end
end
# The last step in the element loop is to assemble `Ke` and `fe`
# into the global `K` and `f` with `assemble!`.
jF.celldofs!(cell_dofs, dh, cell)
jF.assemble!(assembler, cell_dofs, fe, Ke)
end
return K, b
end
# ### Solution of the system
K, b = doassemble(Wh, K, dh);
# To account for the boundary conditions we use the `apply!` function.
apply!(K,b,dbc);
u = K \ b;
# Save approximation on vtu file
vi = jFEMTools.vertexdofs(dh, u_h);
vtk_file = vtk_grid("poisson3D", mesh)
vtk_file["u", WriteVTK.VTKPointData()] = u[vi]
outfiles = WriteVTK.vtk_save(vtk_file)
We solve a Poisson PDE using Virtual Element Method:
using jFEMTools
import Tensors
const jF = jFEMTools
mesh = unitSquareMesh2(RectangleCell, (3,3));
# forcing function
rhs(x::Tensors.Vec{2}) = 2*π^2*sin(π*x[1])*sin(π*x[2])
degree = 2;
dim = jF.getdim(mesh);
element = PoissonVirtualElement(dim,degree);
u = TrialFunction(VEMFunctionSpace(mesh,element))
dofs = DofHandler(mesh, [u]);
operators = VEMOperators(dofs, u;load = rhs);
K = assemble_stiffnessMat(operators);
b = assemble_load(operators);
# Boundary condition
g(x::Tensors.Vec{2}) = sin(π * x[2])*sin(π * x[1]);
dbc = Dirichlet(dofs,u,"boundary",g);
apply!(K,b,dbc);
#Solve
x = K\b
#Plot numerical solution against exact, using Makie
using Makie
import AbstractPlotting
include("src/plot_recipes.jl")
scene = Scene(resolution = (400, 200))
# Plot approximation
vi = jFEMTools.vertexdofs(dofs, u)
plot!(scene, mesh, color = x[vi])
#Plot exact solution
vv = get_vertices_matrix(mesh)
xx = [g(vv) for vv in mesh.vertices];
plot!(scene, mesh, color = xx)