Skip to content

Commit

Permalink
deploy: 25760a7
Browse files Browse the repository at this point in the history
  • Loading branch information
PatBall1 committed Sep 17, 2024
1 parent b40bfdc commit bc2f7e5
Show file tree
Hide file tree
Showing 10 changed files with 27 additions and 27 deletions.
Binary file modified .doctrees/environment.pickle
Binary file not shown.
Binary file modified .doctrees/tutorial.doctree
Binary file not shown.
Binary file modified .doctrees/tutorial_multi.doctree
Binary file not shown.
8 changes: 4 additions & 4 deletions _sources/tutorial.rst.txt
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ and multispectral data at the same time is not currently supported. Stick to
one data type per model (or stack the RGB bands with the multispectral bands
and treat as in the case of multispectral data).

Preparing data (RGB and multispectral)
Preparing data (RGB/multispectral)
--------------------------------------

An example of the recommended file structure when training a new model is as follows:
Expand Down Expand Up @@ -271,7 +271,7 @@ multispectral (``.tif``) tiles.
display(Image.fromarray(image))
Training a model (RGB)
Training (RGB)
----------------------

Before training can commence, it is necessary to register the training data. It is possible to set a validation fold for
Expand Down Expand Up @@ -357,7 +357,7 @@ Training outputs, including model weights and training metrics, will be stored i
Early stopping is implemented and will be triggered by a sustained failure to improve on the performance of
predictions on the validation fold. This is measured as the AP50 score of the validation predictions.

Training a model (multispectral)
Training (multispectral)
--------------------------------

The process for training a multispectral model is similar to that for RGB data but there are some key steps that are
Expand Down Expand Up @@ -547,7 +547,7 @@ model is to be used on a range of different resolutions, random resizing can hel
different scales.


Post-training (check training convergence)
Post-training (check convergence)
------------------------------------------

It is important to check that the model has converged and is not overfitting. This can be done by plotting the training
Expand Down
4 changes: 2 additions & 2 deletions _sources/tutorial_multi.rst.txt
Original file line number Diff line number Diff line change
Expand Up @@ -17,8 +17,8 @@ The key steps are:
4. Making landscape level predictions


Preparing data (RGB and multispectral)
--------------------------------------
Preparing data
--------------

Data can be prepared in a similar way to the single class case but the classes
and their order (mapping) need to be saved so that they can be accessed
Expand Down
10 changes: 5 additions & 5 deletions index.html
Original file line number Diff line number Diff line change
Expand Up @@ -106,18 +106,18 @@ <h2>Citation<a class="headerlink" href="#citation" title="Link to this heading">
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="tutorial.html">2. Tutorial</a><ul>
<li class="toctree-l2"><a class="reference internal" href="tutorial.html#preparing-data-rgb-and-multispectral">2.1. Preparing data (RGB and multispectral)</a></li>
<li class="toctree-l2"><a class="reference internal" href="tutorial.html#training-a-model-rgb">2.2. Training a model (RGB)</a></li>
<li class="toctree-l2"><a class="reference internal" href="tutorial.html#training-a-model-multispectral">2.3. Training a model (multispectral)</a></li>
<li class="toctree-l2"><a class="reference internal" href="tutorial.html#preparing-data-rgb-multispectral">2.1. Preparing data (RGB/multispectral)</a></li>
<li class="toctree-l2"><a class="reference internal" href="tutorial.html#training-rgb">2.2. Training (RGB)</a></li>
<li class="toctree-l2"><a class="reference internal" href="tutorial.html#training-multispectral">2.3. Training (multispectral)</a></li>
<li class="toctree-l2"><a class="reference internal" href="tutorial.html#data-augmentation">2.4. Data augmentation</a></li>
<li class="toctree-l2"><a class="reference internal" href="tutorial.html#post-training-check-training-convergence">2.5. Post-training (check training convergence)</a></li>
<li class="toctree-l2"><a class="reference internal" href="tutorial.html#post-training-check-convergence">2.5. Post-training (check convergence)</a></li>
<li class="toctree-l2"><a class="reference internal" href="tutorial.html#performance-metrics">2.6. Performance metrics</a></li>
<li class="toctree-l2"><a class="reference internal" href="tutorial.html#evaluating-model-performance">2.7. Evaluating model performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="tutorial.html#generating-landscape-predictions">2.8. Generating landscape predictions</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="tutorial_multi.html">3. Tutorial (multiclass)</a><ul>
<li class="toctree-l2"><a class="reference internal" href="tutorial_multi.html#preparing-data-rgb-and-multispectral">3.1. Preparing data (RGB and multispectral)</a></li>
<li class="toctree-l2"><a class="reference internal" href="tutorial_multi.html#preparing-data">3.1. Preparing data</a></li>
<li class="toctree-l2"><a class="reference internal" href="tutorial_multi.html#training-models">3.2. Training models</a></li>
<li class="toctree-l2"><a class="reference internal" href="tutorial_multi.html#landscape-predictions">3.3. Landscape predictions</a></li>
</ul>
Expand Down
Binary file modified objects.inv
Binary file not shown.
2 changes: 1 addition & 1 deletion searchindex.js

Large diffs are not rendered by default.

24 changes: 12 additions & 12 deletions tutorial.html
Original file line number Diff line number Diff line change
Expand Up @@ -51,11 +51,11 @@
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="installation.html">1. Installation</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">2. Tutorial</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#preparing-data-rgb-and-multispectral">2.1. Preparing data (RGB and multispectral)</a></li>
<li class="toctree-l2"><a class="reference internal" href="#training-a-model-rgb">2.2. Training a model (RGB)</a></li>
<li class="toctree-l2"><a class="reference internal" href="#training-a-model-multispectral">2.3. Training a model (multispectral)</a></li>
<li class="toctree-l2"><a class="reference internal" href="#preparing-data-rgb-multispectral">2.1. Preparing data (RGB/multispectral)</a></li>
<li class="toctree-l2"><a class="reference internal" href="#training-rgb">2.2. Training (RGB)</a></li>
<li class="toctree-l2"><a class="reference internal" href="#training-multispectral">2.3. Training (multispectral)</a></li>
<li class="toctree-l2"><a class="reference internal" href="#data-augmentation">2.4. Data augmentation</a></li>
<li class="toctree-l2"><a class="reference internal" href="#post-training-check-training-convergence">2.5. Post-training (check training convergence)</a></li>
<li class="toctree-l2"><a class="reference internal" href="#post-training-check-convergence">2.5. Post-training (check convergence)</a></li>
<li class="toctree-l2"><a class="reference internal" href="#performance-metrics">2.6. Performance metrics</a></li>
<li class="toctree-l2"><a class="reference internal" href="#evaluating-model-performance">2.7. Evaluating model performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="#generating-landscape-predictions">2.8. Generating landscape predictions</a></li>
Expand Down Expand Up @@ -130,8 +130,8 @@ <h1><span class="section-number">2. </span>Tutorial<a class="headerlink" href="#
and multispectral data at the same time is not currently supported. Stick to
one data type per model (or stack the RGB bands with the multispectral bands
and treat as in the case of multispectral data).</p>
<section id="preparing-data-rgb-and-multispectral">
<h2><span class="section-number">2.1. </span>Preparing data (RGB and multispectral)<a class="headerlink" href="#preparing-data-rgb-and-multispectral" title="Link to this heading"></a></h2>
<section id="preparing-data-rgb-multispectral">
<h2><span class="section-number">2.1. </span>Preparing data (RGB/multispectral)<a class="headerlink" href="#preparing-data-rgb-multispectral" title="Link to this heading"></a></h2>
<p>An example of the recommended file structure when training a new model is as follows:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>├──<span class="w"> </span>Danum<span class="w"> </span><span class="o">(</span>site<span class="w"> </span>directory<span class="o">)</span>
<span class="w"> </span>├──<span class="w"> </span>rgb
Expand Down Expand Up @@ -325,8 +325,8 @@ <h2><span class="section-number">2.1. </span>Preparing data (RGB and multispectr
</pre></div>
</div>
</section>
<section id="training-a-model-rgb">
<h2><span class="section-number">2.2. </span>Training a model (RGB)<a class="headerlink" href="#training-a-model-rgb" title="Link to this heading"></a></h2>
<section id="training-rgb">
<h2><span class="section-number">2.2. </span>Training (RGB)<a class="headerlink" href="#training-rgb" title="Link to this heading"></a></h2>
<p>Before training can commence, it is necessary to register the training data. It is possible to set a validation fold for
model evaluation (which can be helpful for tuning models). The validation fold can be changed over different training
steps to expose the model to the full range of available training data. Register as many different folders as necessary</p>
Expand Down Expand Up @@ -398,8 +398,8 @@ <h2><span class="section-number">2.2. </span>Training a model (RGB)<a class="hea
predictions on the validation fold. This is measured as the AP50 score of the validation predictions.</p>
</div>
</section>
<section id="training-a-model-multispectral">
<h2><span class="section-number">2.3. </span>Training a model (multispectral)<a class="headerlink" href="#training-a-model-multispectral" title="Link to this heading"></a></h2>
<section id="training-multispectral">
<h2><span class="section-number">2.3. </span>Training (multispectral)<a class="headerlink" href="#training-multispectral" title="Link to this heading"></a></h2>
<p>The process for training a multispectral model is similar to that for RGB data but there are some key steps that are
different. Data will be read from <code class="docutils literal notranslate"><span class="pre">.tif</span></code> files of 4 or more bands instead of the 3-band <code class="docutils literal notranslate"><span class="pre">.png</span></code> files.</p>
<p>Data should be registered as before:</p>
Expand Down Expand Up @@ -549,8 +549,8 @@ <h2><span class="section-number">2.4. </span>Data augmentation<a class="headerli
model is to be used on a range of different resolutions, random resizing can help the model learn to detect objects at
different scales.</p>
</section>
<section id="post-training-check-training-convergence">
<h2><span class="section-number">2.5. </span>Post-training (check training convergence)<a class="headerlink" href="#post-training-check-training-convergence" title="Link to this heading"></a></h2>
<section id="post-training-check-convergence">
<h2><span class="section-number">2.5. </span>Post-training (check convergence)<a class="headerlink" href="#post-training-check-convergence" title="Link to this heading"></a></h2>
<p>It is important to check that the model has converged and is not overfitting. This can be done by plotting the training
and validation loss over time. The <code class="docutils literal notranslate"><span class="pre">detectron2</span></code> training routine will output a <code class="docutils literal notranslate"><span class="pre">metrics.json</span></code> file that can be used
to plot the training and validation loss. The following code can be used to plot the loss:</p>
Expand Down
6 changes: 3 additions & 3 deletions tutorial_multi.html
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@
<li class="toctree-l1"><a class="reference internal" href="installation.html">1. Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="tutorial.html">2. Tutorial</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">3. Tutorial (multiclass)</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#preparing-data-rgb-and-multispectral">3.1. Preparing data (RGB and multispectral)</a></li>
<li class="toctree-l2"><a class="reference internal" href="#preparing-data">3.1. Preparing data</a></li>
<li class="toctree-l2"><a class="reference internal" href="#training-models">3.2. Training models</a></li>
<li class="toctree-l2"><a class="reference internal" href="#landscape-predictions">3.3. Landscape predictions</a></li>
</ul>
Expand Down Expand Up @@ -99,8 +99,8 @@ <h1><span class="section-number">3. </span>Tutorial (multiclass)<a class="header
<li><p>Evaluating model performance</p></li>
<li><p>Making landscape level predictions</p></li>
</ol>
<section id="preparing-data-rgb-and-multispectral">
<h2><span class="section-number">3.1. </span>Preparing data (RGB and multispectral)<a class="headerlink" href="#preparing-data-rgb-and-multispectral" title="Link to this heading"></a></h2>
<section id="preparing-data">
<h2><span class="section-number">3.1. </span>Preparing data<a class="headerlink" href="#preparing-data" title="Link to this heading"></a></h2>
<p>Data can be prepared in a similar way to the single class case but the classes
and their order (mapping) need to be saved so that they can be accessed
consistently across training and prediction. The classes are saved in a json
Expand Down

0 comments on commit bc2f7e5

Please sign in to comment.