Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add reader and train logic for PyramidBox. #927

Merged
merged 2 commits into from
May 24, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
241 changes: 241 additions & 0 deletions fluid/face_detction/image_util.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,241 @@
from PIL import Image, ImageEnhance, ImageDraw
from PIL import ImageFile
import numpy as np
import random
import math

ImageFile.LOAD_TRUNCATED_IMAGES = True #otherwise IOError raised image file is truncated


class sampler():
def __init__(self, max_sample, max_trial, min_scale, max_scale,
min_aspect_ratio, max_aspect_ratio, min_jaccard_overlap,
max_jaccard_overlap):
self.max_sample = max_sample
self.max_trial = max_trial
self.min_scale = min_scale
self.max_scale = max_scale
self.min_aspect_ratio = min_aspect_ratio
self.max_aspect_ratio = max_aspect_ratio
self.min_jaccard_overlap = min_jaccard_overlap
self.max_jaccard_overlap = max_jaccard_overlap


class bbox():
def __init__(self, xmin, ymin, xmax, ymax):
self.xmin = xmin
self.ymin = ymin
self.xmax = xmax
self.ymax = ymax


def bbox_area(src_bbox):
width = src_bbox.xmax - src_bbox.xmin
height = src_bbox.ymax - src_bbox.ymin
return width * height


def generate_sample(sampler):
scale = random.uniform(sampler.min_scale, sampler.max_scale)
min_aspect_ratio = max(sampler.min_aspect_ratio, (scale**2.0))
max_aspect_ratio = min(sampler.max_aspect_ratio, 1 / (scale**2.0))
aspect_ratio = random.uniform(min_aspect_ratio, max_aspect_ratio)
bbox_width = scale * (aspect_ratio**0.5)
bbox_height = scale / (aspect_ratio**0.5)
xmin_bound = 1 - bbox_width
ymin_bound = 1 - bbox_height
xmin = random.uniform(0, xmin_bound)
ymin = random.uniform(0, ymin_bound)
xmax = xmin + bbox_width
ymax = ymin + bbox_height
sampled_bbox = bbox(xmin, ymin, xmax, ymax)
return sampled_bbox


def jaccard_overlap(sample_bbox, object_bbox):
if sample_bbox.xmin >= object_bbox.xmax or \
sample_bbox.xmax <= object_bbox.xmin or \
sample_bbox.ymin >= object_bbox.ymax or \
sample_bbox.ymax <= object_bbox.ymin:
return 0
intersect_xmin = max(sample_bbox.xmin, object_bbox.xmin)
intersect_ymin = max(sample_bbox.ymin, object_bbox.ymin)
intersect_xmax = min(sample_bbox.xmax, object_bbox.xmax)
intersect_ymax = min(sample_bbox.ymax, object_bbox.ymax)
intersect_size = (intersect_xmax - intersect_xmin) * (
intersect_ymax - intersect_ymin)
sample_bbox_size = bbox_area(sample_bbox)
object_bbox_size = bbox_area(object_bbox)
overlap = intersect_size / (
sample_bbox_size + object_bbox_size - intersect_size)
return overlap


def satisfy_sample_constraint(sampler, sample_bbox, bbox_labels):
if sampler.min_jaccard_overlap == 0 and sampler.max_jaccard_overlap == 0:
return True
for i in range(len(bbox_labels)):
object_bbox = bbox(
bbox_labels[i][0],
bbox_labels[i][1], # tangxu @ 2018-05-17
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please remove # tangxu @ 2018-05-17 in all files.

bbox_labels[i][2],
bbox_labels[i][3])
overlap = jaccard_overlap(sample_bbox, object_bbox)
if sampler.min_jaccard_overlap != 0 and \
overlap < sampler.min_jaccard_overlap:
continue
if sampler.max_jaccard_overlap != 0 and \
overlap > sampler.max_jaccard_overlap:
continue
return True
return False


def generate_batch_samples(batch_sampler, bbox_labels):
sampled_bbox = []
index = []
c = 0
for sampler in batch_sampler:
found = 0
for i in range(sampler.max_trial):
if found >= sampler.max_sample:
break
sample_bbox = generate_sample(sampler)
if satisfy_sample_constraint(sampler, sample_bbox, bbox_labels):
sampled_bbox.append(sample_bbox)
found = found + 1
index.append(c)
c = c + 1
return sampled_bbox


def clip_bbox(src_bbox):
src_bbox.xmin = max(min(src_bbox.xmin, 1.0), 0.0)
src_bbox.ymin = max(min(src_bbox.ymin, 1.0), 0.0)
src_bbox.xmax = max(min(src_bbox.xmax, 1.0), 0.0)
src_bbox.ymax = max(min(src_bbox.ymax, 1.0), 0.0)
return src_bbox


def meet_emit_constraint(src_bbox, sample_bbox):
center_x = (src_bbox.xmax + src_bbox.xmin) / 2
center_y = (src_bbox.ymax + src_bbox.ymin) / 2
if center_x >= sample_bbox.xmin and \
center_x <= sample_bbox.xmax and \
center_y >= sample_bbox.ymin and \
center_y <= sample_bbox.ymax:
return True
return False


def transform_labels(bbox_labels, sample_bbox):
proj_bbox = bbox(0, 0, 0, 0)
sample_labels = []
for i in range(len(bbox_labels)):
sample_label = []
object_bbox = bbox(bbox_labels[i][0], bbox_labels[i][1],
bbox_labels[i][2], bbox_labels[i][3])
if not meet_emit_constraint(object_bbox, sample_bbox):
continue
sample_width = sample_bbox.xmax - sample_bbox.xmin
sample_height = sample_bbox.ymax - sample_bbox.ymin
proj_bbox.xmin = (object_bbox.xmin - sample_bbox.xmin) / sample_width
proj_bbox.ymin = (object_bbox.ymin - sample_bbox.ymin) / sample_height
proj_bbox.xmax = (object_bbox.xmax - sample_bbox.xmin) / sample_width
proj_bbox.ymax = (object_bbox.ymax - sample_bbox.ymin) / sample_height
proj_bbox = clip_bbox(proj_bbox)
if bbox_area(proj_bbox) > 0:
sample_label.append(bbox_labels[i][0])
sample_label.append(float(proj_bbox.xmin))
sample_label.append(float(proj_bbox.ymin))
sample_label.append(float(proj_bbox.xmax))
sample_label.append(float(proj_bbox.ymax))
#sample_label.append(bbox_labels[i][5])
sample_label = sample_label + bbox_labels[i][5:]
sample_labels.append(sample_label)
return sample_labels


def crop_image(img, bbox_labels, sample_bbox, image_width, image_height):
sample_bbox = clip_bbox(sample_bbox)
xmin = int(sample_bbox.xmin * image_width)
xmax = int(sample_bbox.xmax * image_width)
ymin = int(sample_bbox.ymin * image_height)
ymax = int(sample_bbox.ymax * image_height)
sample_img = img[ymin:ymax, xmin:xmax]
sample_labels = transform_labels(bbox_labels, sample_bbox)
return sample_img, sample_labels


def random_brightness(img, settings):
prob = random.uniform(0, 1)
if prob < settings._brightness_prob:
delta = random.uniform(-settings._brightness_delta,
settings._brightness_delta) + 1
img = ImageEnhance.Brightness(img).enhance(delta)
return img


def random_contrast(img, settings):
prob = random.uniform(0, 1)
if prob < settings._contrast_prob:
delta = random.uniform(-settings._contrast_delta,
settings._contrast_delta) + 1
img = ImageEnhance.Contrast(img).enhance(delta)
return img


def random_saturation(img, settings):
prob = random.uniform(0, 1)
if prob < settings._saturation_prob:
delta = random.uniform(-settings._saturation_delta,
settings._saturation_delta) + 1
img = ImageEnhance.Color(img).enhance(delta)
return img


def random_hue(img, settings):
prob = random.uniform(0, 1)
if prob < settings._hue_prob:
delta = random.uniform(-settings._hue_delta, settings._hue_delta)
img_hsv = np.array(img.convert('HSV'))
img_hsv[:, :, 0] = img_hsv[:, :, 0] + delta
img = Image.fromarray(img_hsv, mode='HSV').convert('RGB')
return img


def distort_image(img, settings):
prob = random.uniform(0, 1)
# Apply different distort order
if prob > 0.5:
img = random_brightness(img, settings)
img = random_contrast(img, settings)
img = random_saturation(img, settings)
img = random_hue(img, settings)
else:
img = random_brightness(img, settings)
img = random_saturation(img, settings)
img = random_hue(img, settings)
img = random_contrast(img, settings)
return img


def expand_image(img, bbox_labels, img_width, img_height, settings):
prob = random.uniform(0, 1)
if prob < settings._expand_prob:
if settings._expand_max_ratio - 1 >= 0.01:
expand_ratio = random.uniform(1, settings._expand_max_ratio)
height = int(img_height * expand_ratio)
width = int(img_width * expand_ratio)
h_off = math.floor(random.uniform(0, height - img_height))
w_off = math.floor(random.uniform(0, width - img_width))
expand_bbox = bbox(-w_off / img_width, -h_off / img_height,
(width - w_off) / img_width,
(height - h_off) / img_height)
expand_img = np.ones((height, width, 3))
expand_img = np.uint8(expand_img * np.squeeze(settings._img_mean))
expand_img = Image.fromarray(expand_img)
expand_img.paste(img, (int(w_off), int(h_off)))
bbox_labels = transform_labels(bbox_labels, expand_bbox)
return expand_img, bbox_labels, width, height
return img, bbox_labels, img_width, img_height
44 changes: 40 additions & 4 deletions fluid/face_detction/pyramidbox.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@ def conv_block(input, groups, filters, ksizes, strides=None, with_pool=True):


class PyramidBox(object):
def __init__(self, data_shape, is_infer=False):
def __init__(self, data_shape, is_infer=False, sub_network=False):
self.data_shape = data_shape
self.min_sizes = [16., 32., 64., 128., 256., 512.]
self.steps = [4., 8., 16., 32., 64., 128.]
Expand All @@ -54,9 +54,10 @@ def __init__(self, data_shape, is_infer=False):
# the base network is VGG with atrus layers
self._input()
self._vgg()
self._low_level_fpn()
self._cpm_module()
self._pyramidbox()
if sub_network:
self._low_level_fpn()
self._cpm_module()
self._pyramidbox()

def _input(self):
self.image = fluid.layers.data(
Expand All @@ -66,6 +67,8 @@ def _input(self):
name='gt_box', shape=[4], dtype='float32', lod_level=1)
self.gt_label = fluid.layers.data(
name='gt_label', shape=[1], dtype='int32', lod_level=1)
self.difficult = fluid.layers.data(
name='gt_difficult', shape=[1], dtype='int32', lod_level=1)

def _vgg(self):
self.conv1 = conv_block(self.image, 2, [64] * 2, [3] * 2)
Expand Down Expand Up @@ -232,6 +235,39 @@ def permute_and_reshape(input, last_dim):
self.prior_boxes = fluid.layers.concat(boxes)
self.box_vars = fluid.layers.concat(vars)

def vgg_ssd(self, num_classes, image_shape): # tangxu

self.conv3_norm = self._l2_norm_scale(self.conv3)
self.conv4_norm = self._l2_norm_scale(self.conv4)
self.conv5_norm = self._l2_norm_scale(self.conv5)

mbox_locs, mbox_confs, box, box_var = fluid.layers.multi_box_head(
inputs=[
self.conv3_norm, self.conv4_norm, self.conv5_norm, self.conv6,
self.conv7, self.conv8
],
image=self.image,
num_classes=num_classes,
# min_ratio=20,
# max_ratio=90,
min_sizes=[16.0, 32.0, 64.0, 128.0, 256.0, 512.0],
max_sizes=[[], [], [], [], [], []],
# max_sizes=[[], 150.0, 195.0, 240.0, 285.0, 300.0],
aspect_ratios=[[1.], [1.], [1.], [1.], [1.], [1.]],
steps=[4.0, 8.0, 16.0, 32.0, 64.0, 128.0],
base_size=image_shape[2],
offset=0.5,
flip=False)

# locs, confs, box, box_var = vgg_extra_net(num_classes, image, image_shape)
# nmsed_out = fluid.layers.detection_output(
# locs, confs, box, box_var, nms_threshold=args.nms_threshold)
loss = fluid.layers.ssd_loss(mbox_locs, mbox_confs, self.gt_box,
self.gt_label, box, box_var)
loss = fluid.layers.reduce_sum(loss)

return loss

def train(self):
face_loss = fluid.layers.ssd_loss(
self.face_mbox_loc, self.face_mbox_conf, self.gt_box, self.gt_label,
Expand Down
Loading