Skip to content

Commit

Permalink
Merge pull request #31 from dzhwinter/model_ltr2
Browse files Browse the repository at this point in the history
Add the example for pairwise and listwise LTR.
  • Loading branch information
lcy-seso authored May 24, 2017
2 parents d5cc115 + a87a3c9 commit 8de3d19
Show file tree
Hide file tree
Showing 8 changed files with 669 additions and 1 deletion.
369 changes: 368 additions & 1 deletion ltr/README.md

Large diffs are not rendered by default.

Binary file added ltr/image/lambdarank.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added ltr/image/learningToRank.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added ltr/image/ranknet.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added ltr/image/search-engine-example.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
124 changes: 124 additions & 0 deletions ltr/lambdaRank.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
import os, sys
import gzip
import paddle.v2 as paddle
import numpy as np
import functools

#lambdaRank is listwise learning to rank model


def lambdaRank(input_dim):
"""
lambdaRank is a ListWise Rank Model, input data and label must be sequence
https://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions.pdf
parameters :
input_dim, one document's dense feature vector dimension
dense_vector_sequence format
[[f, ...], [f, ...], ...], f is represent for an float or int number
"""
label = paddle.layer.data("label",
paddle.data_type.dense_vector_sequence(1))
data = paddle.layer.data("data",
paddle.data_type.dense_vector_sequence(input_dim))

# hidden layer
hd1 = paddle.layer.fc(
input=data,
size=128,
act=paddle.activation.Tanh(),
param_attr=paddle.attr.Param(initial_std=0.01))

hd2 = paddle.layer.fc(
input=hd1,
size=10,
act=paddle.activation.Tanh(),
param_attr=paddle.attr.Param(initial_std=0.01))
output = paddle.layer.fc(
input=hd2,
size=1,
act=paddle.activation.Linear(),
param_attr=paddle.attr.Param(initial_std=0.01))

# evaluator
evaluator = paddle.evaluator.auc(input=output, label=label)
# cost layer
cost = paddle.layer.lambda_cost(
input=output, score=label, NDCG_num=6, max_sort_size=-1)
return cost, output


def train_lambdaRank(num_passes):
# listwise input sequence
fill_default_train = functools.partial(
paddle.dataset.mq2007.train, format="listwise")
fill_default_test = functools.partial(
paddle.dataset.mq2007.test, format="listwise")
train_reader = paddle.batch(
paddle.reader.shuffle(fill_default_train, buf_size=100), batch_size=32)
test_reader = paddle.batch(fill_default_test, batch_size=32)

# mq2007 input_dim = 46, dense format
input_dim = 46
cost, output = lambdaRank(input_dim)
parameters = paddle.parameters.create(cost)

trainer = paddle.trainer.SGD(
cost=cost,
parameters=parameters,
update_equation=paddle.optimizer.Adam(learning_rate=1e-4))

# Define end batch and end pass event handler
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
print "Pass %d Batch %d Cost %.9f" % (event.pass_id, event.batch_id,
event.cost)
if isinstance(event, paddle.event.EndPass):
result = trainer.test(reader=test_reader, feeding=feeding)
print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
with gzip.open("lambdaRank_params_%d.tar.gz" % (event.pass_id),
"w") as f:
parameters.to_tar(f)

feeding = {"label": 0, "data": 1}
trainer.train(
reader=train_reader,
event_handler=event_handler,
feeding=feeding,
num_passes=num_passes)


def lambdaRank_infer(pass_id):
"""
lambdaRank model inference interface
parameters:
pass_id : inference model in pass_id
"""
print "Begin to Infer..."
input_dim = 46
output = lambdaRank(input_dim)
parameters = paddle.parameters.Parameters.from_tar(
gzip.open("lambdaRank_params_%d.tar.gz" % (pass_id - 1)))

infer_query_id = None
infer_data = []
infer_data_num = 1
fill_default_test = functools.partial(
paddle.dataset.mq2007.test, format="listwise")
for label, querylist in fill_default_test():
infer_data.append(querylist)
if len(infer_data) == infer_data_num:
break

# predict score of infer_data document. Re-sort the document base on predict score
# in descending order. then we build the ranking documents
predicitons = paddle.infer(
output_layer=output, parameters=parameters, input=infer_data)
for i, score in enumerate(predicitons):
print i, score


if __name__ == '__main__':
paddle.init(use_gpu=False, trainer_count=4)
train_lambdaRank(2)
lambdaRank_infer(pass_id=1)
42 changes: 42 additions & 0 deletions ltr/metrics.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
import numpy as np
import unittest


def ndcg(score_list):
"""
measure the ndcg score of order list
https://en.wikipedia.org/wiki/Discounted_cumulative_gain
parameter:
score_list: np.array, shape=(sample_num,1)
e.g. predict rank score list :
>>> scores = [3, 2, 3, 0, 1, 2]
>>> ndcg_score = ndcg(scores)
"""

def dcg(score_list):
n = len(score_list)
cost = .0
for i in range(n):
cost += float(score_list[i]) / np.log((i + 1) + 1)
return cost

dcg_cost = dcg(score_list)
score_ranking = sorted(score_list, reverse=True)
ideal_cost = dcg(score_ranking)
return dcg_cost / ideal_cost


class NdcgTest(unittest.TestCase):
def __init__(self):
pass

def runcase(self):
a = [3, 2, 3, 0, 1, 2]
value = ndcg(a)
self.assertAlmostEqual(0.961, value, places=3)


if __name__ == '__main__':
unittest.main()
135 changes: 135 additions & 0 deletions ltr/ranknet.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,135 @@
import os
import sys
import gzip
import functools
import paddle.v2 as paddle
import numpy as np
from metrics import ndcg

# ranknet is the classic pairwise learning to rank algorithm
# http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf


def half_ranknet(name_prefix, input_dim):
"""
parameter in same name will be shared in paddle framework,
these parameters in ranknet can be used in shared state, e.g. left network and right network
shared parameters in detail
https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/api.md
"""
# data layer
data = paddle.layer.data(name_prefix + "/data",
paddle.data_type.dense_vector(input_dim))

# hidden layer
hd1 = paddle.layer.fc(
input=data,
size=10,
act=paddle.activation.Tanh(),
param_attr=paddle.attr.Param(initial_std=0.01, name="hidden_w1"))
# fully connect layer/ output layer
output = paddle.layer.fc(
input=hd1,
size=1,
act=paddle.activation.Linear(),
param_attr=paddle.attr.Param(initial_std=0.01, name="output"))
return output


def ranknet(input_dim):
# label layer
label = paddle.layer.data("label", paddle.data_type.dense_vector(1))

# reuse the parameter in half_ranknet
output_left = half_ranknet("left", input_dim)
output_right = half_ranknet("right", input_dim)

evaluator = paddle.evaluator.auc(input=output_left, label=label)
# rankcost layer
cost = paddle.layer.rank_cost(
name="cost", left=output_left, right=output_right, label=label)
return cost


def train_ranknet(num_passes):
train_reader = paddle.batch(
paddle.reader.shuffle(paddle.dataset.mq2007.train, buf_size=100),
batch_size=100)
test_reader = paddle.batch(paddle.dataset.mq2007.test, batch_size=100)

# mq2007 feature_dim = 46, dense format
# fc hidden_dim = 128
feature_dim = 46
cost = ranknet(feature_dim)
parameters = paddle.parameters.create(cost)

trainer = paddle.trainer.SGD(
cost=cost,
parameters=parameters,
update_equation=paddle.optimizer.Adam(learning_rate=2e-4))

# Define the input data order
feeding = {"label": 0, "left/data": 1, "right/data": 2}

# Define end batch and end pass event handler
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "Pass %d Batch %d Cost %.9f" % (
event.pass_id, event.batch_id, event.cost)
else:
sys.stdout.write(".")
sys.stdout.flush()
if isinstance(event, paddle.event.EndPass):
result = trainer.test(reader=test_reader, feeding=feeding)
print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
with gzip.open("ranknet_params_%d.tar.gz" % (event.pass_id),
"w") as f:
parameters.to_tar(f)

trainer.train(
reader=train_reader,
event_handler=event_handler,
feeding=feeding,
num_passes=num_passes)


def ranknet_infer(pass_id):
"""
load the trained model. And predict with plain txt input
"""
print "Begin to Infer..."
feature_dim = 46

# we just need half_ranknet to predict a rank score, which can be used in sort documents
output = half_ranknet("left", feature_dim)
parameters = paddle.parameters.Parameters.from_tar(
gzip.open("ranknet_params_%d.tar.gz" % (pass_id - 1)))

# load data of same query and relevance documents, need ranknet to rank these candidates
infer_query_id = []
infer_data = []
infer_doc_index = []

# convert to mq2007 built-in data format
# <query_id> <relevance_score> <feature_vector>
plain_txt_test = functools.partial(
paddle.dataset.mq2007.test, format="plain_txt")

for query_id, relevance_score, feature_vector in plain_txt_test():
infer_query_id.append(query_id)
infer_data.append(feature_vector)

# predict score of infer_data document. Re-sort the document base on predict score
# in descending order. then we build the ranking documents
scores = paddle.infer(
output_layer=output, parameters=parameters, input=infer_data)
for query_id, score in zip(infer_query_id, scores):
print "query_id : ", query_id, " ranknet rank document order : ", score


if __name__ == '__main__':
paddle.init(use_gpu=False, trainer_count=4)
pass_num = 2
train_ranknet(pass_num)
ranknet_infer(pass_id=pass_num - 1)

0 comments on commit 8de3d19

Please sign in to comment.