Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【asr】add chunk config for tal_cs #3936

Merged
merged 3 commits into from
Dec 6, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
96 changes: 96 additions & 0 deletions examples/tal_cs/asr1/conf/chunk_conformer.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
############################################
# Network Architecture #
############################################
cmvn_file:
cmvn_file_type: "json"
# encoder related
encoder: conformer
encoder_conf:
output_size: 512 # dimension of attention
attention_heads: 8
linear_units: 2048 # the number of units of position-wise feed forward
num_blocks: 12 # the number of encoder blocks
dropout_rate: 0.1 # sublayer output dropout
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: True
cnn_module_kernel: 15
use_cnn_module: True
activation_type: 'swish'
pos_enc_layer_type: 'rel_pos'
selfattention_layer_type: 'rel_selfattn'
causal: true
use_dynamic_chunk: true
cnn_module_norm: 'layer_norm' # using nn.LayerNorm makes model converge faster
use_dynamic_left_chunk: false
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 8
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1 # sublayer output dropout
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# hybrid CTC/attention
model_conf:
ctc_weight: 0.3
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
init_type: 'kaiming_uniform' # !Warning: need to convergence

###########################################
# Data #
###########################################

train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test


###########################################
# Dataloader #
###########################################

vocab_filepath: data/lang_char/vocab.txt
spm_model_prefix: 'data/lang_char/bpe_bpe_11297'
unit_type: 'spm'
preprocess_config: conf/preprocess.yaml
feat_dim: 80
stride_ms: 20.0
window_ms: 30.0
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
batch_size: 32
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
minibatches: 0 # for debug
batch_count: auto
batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
num_workers: 2
subsampling_factor: 1
num_encs: 1

###########################################
# Training #
###########################################
n_epoch: 100
accum_grad: 4
global_grad_clip: 5.0
dist_sampler: False
optim: adam
optim_conf:
lr: 0.002
weight_decay: 1.0e-6
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5