Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【PPSCI Export&Infer No.26-27】 #893

Merged
merged 1 commit into from
May 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 36 additions & 0 deletions docs/zh/examples/control_arm.md
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,42 @@
python inverse_parameter.py mode=eval EVAL.pretrained_model_path=https://paddle-org.bj.bcebos.com/paddlescience/models/control_arm/inverse_x_axis_pretrained.pdparams
```

=== "模型导出命令"

=== "正问题:受力分析求解"

``` sh
python forward_analysis.py mode=export
```

=== "逆问题:参数逆推求解"

``` sh
python inverse_parameter.py mode=export
```

=== "模型推理命令"

=== "正问题:受力分析求解"

``` sh
# linux
wget -nc https://paddle-org.bj.bcebos.com/paddlescience/datasets/control_arm/control_arm.stl -P ./datasets/
# windows
# curl https://paddle-org.bj.bcebos.com/paddlescience/datasets/control_arm/control_arm.stl --output ./datasets/control_arm.stl
python forward_analysis.py mode=infer
```

=== "逆问题:参数逆推求解"

``` sh
# linux
wget -nc https://paddle-org.bj.bcebos.com/paddlescience/datasets/control_arm/control_arm.stl -P ./datasets/
# windows
# curl https://paddle-org.bj.bcebos.com/paddlescience/datasets/control_arm/control_arm.stl --output ./datasets/control_arm.stl
python inverse_parameter.py mode=infer
```

| 预训练模型 | 指标 |
|:--| :--|
| [inverse_x_axis_pretrained.pdparams](https://paddle-org.bj.bcebos.com/paddlescience/models/control_arm/inverse_x_axis_pretrained.pdparams) | loss(geo_eval): 0.02505<br>L2Rel.lambda_(geo_eval): 0.06025<br>L2Rel.mu(geo_eval): 0.07949 |
Expand Down
20 changes: 20 additions & 0 deletions examples/control_arm/conf/forward_analysis.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,8 @@ hydra:
- TRAIN.checkpoint_path
- TRAIN.pretrained_model_path
- EVAL.pretrained_model_path
- INFER.pretrained_model_path
- INFER.export_path
- mode
- output_dir
- log_freq
Expand Down Expand Up @@ -87,3 +89,21 @@ TRAIN:
EVAL:
eval_with_no_grad: true
pretrained_model_path: null


INFER:
pretrained_model_path: https://paddle-org.bj.bcebos.com/paddlescience/models/control_arm/forward_x_axis_pretrained.pdparams
export_path: ./inference/forward_analysis
pdmodel_path: ${INFER.export_path}.pdmodel
pdiparams_path: ${INFER.export_path}.pdiparams
device: gpu
engine: native
precision: fp32
onnx_path: ${INFER.export_path}.onnx
ir_optim: true
min_subgraph_size: 10
gpu_mem: 4000
gpu_id: 0
max_batch_size: 128
num_cpu_threads: 4
batch_size: 64
19 changes: 19 additions & 0 deletions examples/control_arm/conf/inverse_parameter.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,8 @@ hydra:
- TRAIN.checkpoint_path
- TRAIN.pretrained_model_path
- EVAL.pretrained_model_path
- INFER.pretrained_model_path
- INFER.export_path
- mode
- output_dir
- log_freq
Expand Down Expand Up @@ -99,3 +101,20 @@ EVAL:
batch_size:
validator: 1024
visualizer_vtu: 100000

INFER:
pretrained_model_path: https://paddle-org.bj.bcebos.com/paddlescience/models/control_arm/inverse_x_axis_pretrained.pdparams
export_path: ./inference/inverse_parameter
pdmodel_path: ${INFER.export_path}.pdmodel
pdiparams_path: ${INFER.export_path}.pdiparams
device: gpu
engine: native
precision: fp32
onnx_path: ${INFER.export_path}.onnx
ir_optim: true
min_subgraph_size: 10
gpu_mem: 4000
gpu_id: 0
max_batch_size: 128
num_cpu_threads: 4
batch_size: 64
83 changes: 82 additions & 1 deletion examples/control_arm/forward_analysis.py
Original file line number Diff line number Diff line change
Expand Up @@ -281,6 +281,81 @@ def evaluate(cfg: DictConfig):
solver.visualize()


def export(cfg: DictConfig):
from paddle.static import InputSpec

# set model
disp_net = ppsci.arch.MLP(**cfg.MODEL.disp_net)
stress_net = ppsci.arch.MLP(**cfg.MODEL.stress_net)
# wrap to a model_list
model_list = ppsci.arch.ModelList((disp_net, stress_net))

# load pretrained model
solver = ppsci.solver.Solver(
model=model_list, pretrained_model_path=cfg.INFER.pretrained_model_path
)

# export models
input_spec = [
{
key: InputSpec([None, 1], "float32", name=key)
for key in cfg.MODEL.disp_net.input_keys
},
]
solver.export(input_spec, cfg.INFER.export_path)


def inference(cfg: DictConfig):
from deploy.python_infer import pinn_predictor
from ppsci.visualize import vtu

# set model predictor
predictor = pinn_predictor.PINNPredictor(cfg)

# set geometry
control_arm = ppsci.geometry.Mesh(cfg.GEOM_PATH)
# geometry bool operation
geo = control_arm
geom = {"geo": geo}
# set bounds
BOUNDS_X, BOUNDS_Y, BOUNDS_Z = control_arm.bounds

# set visualizer(optional)
# add inferencer data
samples = geom["geo"].sample_interior(
cfg.TRAIN.batch_size.visualizer_vtu,
criteria=lambda x, y, z: (
(BOUNDS_X[0] < x)
& (x < BOUNDS_X[1])
& (BOUNDS_Y[0] < y)
& (y < BOUNDS_Y[1])
& (BOUNDS_Z[0] < z)
& (z < BOUNDS_Z[1])
),
)
pred_input_dict = {
k: v for k, v in samples.items() if k in cfg.MODEL.disp_net.input_keys
}

output_dict = predictor.predict(pred_input_dict, cfg.INFER.batch_size)

# mapping data to output_keys
output_keys = cfg.MODEL.disp_net.output_keys + cfg.MODEL.stress_net.output_keys
output_dict = {
store_key: output_dict[infer_key]
for store_key, infer_key in zip(output_keys, output_dict.keys())
}
output_dict.update(pred_input_dict)

vtu.save_vtu_from_dict(
osp.join(cfg.output_dir, "vis"),
output_dict,
cfg.MODEL.disp_net.input_keys,
output_keys,
1,
)


@hydra.main(
version_base=None, config_path="./conf", config_name="forward_analysis.yaml"
)
Expand All @@ -289,8 +364,14 @@ def main(cfg: DictConfig):
train(cfg)
elif cfg.mode == "eval":
evaluate(cfg)
elif cfg.mode == "export":
export(cfg)
elif cfg.mode == "infer":
inference(cfg)
else:
raise ValueError(f"cfg.mode should in ['train', 'eval'], but got '{cfg.mode}'")
raise ValueError(
f"cfg.mode should in ['train', 'eval', 'export', 'infer'], but got '{cfg.mode}'"
)


if __name__ == "__main__":
Expand Down
88 changes: 87 additions & 1 deletion examples/control_arm/inverse_parameter.py
Original file line number Diff line number Diff line change
Expand Up @@ -265,6 +265,86 @@ def evaluate(cfg: DictConfig):
solver.visualize()


def export(cfg: DictConfig):
from paddle.static import InputSpec

# set model
disp_net = ppsci.arch.MLP(**cfg.MODEL.disp_net)
stress_net = ppsci.arch.MLP(**cfg.MODEL.stress_net)
inverse_lambda_net = ppsci.arch.MLP(**cfg.MODEL.inverse_lambda_net)
inverse_mu_net = ppsci.arch.MLP(**cfg.MODEL.inverse_mu_net)
# wrap to a model_list
model = ppsci.arch.ModelList(
(disp_net, stress_net, inverse_lambda_net, inverse_mu_net)
)

# load pretrained model
solver = ppsci.solver.Solver(
model=model, pretrained_model_path=cfg.INFER.pretrained_model_path
)

# export models
input_spec = [
{
key: InputSpec([None, 1], "float32", name=key)
for key in cfg.MODEL.disp_net.input_keys
},
]
solver.export(input_spec, cfg.INFER.export_path)


def inference(cfg: DictConfig):
from deploy.python_infer import pinn_predictor
from ppsci.visualize import vtu

# set model predictor
predictor = pinn_predictor.PINNPredictor(cfg)

# set geometry
control_arm = ppsci.geometry.Mesh(cfg.GEOM_PATH)
# geometry bool operation
geo = control_arm
geom = {"geo": geo}
# set bounds
BOUNDS_X, BOUNDS_Y, BOUNDS_Z = control_arm.bounds
samples = geom["geo"].sample_interior(
cfg.EVAL.batch_size.visualizer_vtu,
criteria=lambda x, y, z: (
(BOUNDS_X[0] < x)
& (x < BOUNDS_X[1])
& (BOUNDS_Y[0] < y)
& (y < BOUNDS_Y[1])
& (BOUNDS_Z[0] < z)
& (z < BOUNDS_Z[1])
),
)
pred_input_dict = {
k: v for k, v in samples.items() if k in cfg.MODEL.disp_net.input_keys
}

output_dict = predictor.predict(pred_input_dict, cfg.INFER.batch_size)

# mapping data to output_keys
output_keys = (
cfg.MODEL.disp_net.output_keys
+ cfg.MODEL.stress_net.output_keys
+ cfg.MODEL.inverse_lambda_net.output_keys
+ cfg.MODEL.inverse_mu_net.output_keys
)
output_dict = {
store_key: output_dict[infer_key]
for store_key, infer_key in zip(output_keys, output_dict.keys())
}
output_dict.update(pred_input_dict)
vtu.save_vtu_from_dict(
osp.join(cfg.output_dir, "vis"),
output_dict,
cfg.MODEL.disp_net.input_keys,
output_keys,
1,
)


@hydra.main(
version_base=None, config_path="./conf", config_name="inverse_parameter.yaml"
)
Expand All @@ -273,8 +353,14 @@ def main(cfg: DictConfig):
train(cfg)
elif cfg.mode == "eval":
evaluate(cfg)
elif cfg.mode == "export":
export(cfg)
elif cfg.mode == "infer":
inference(cfg)
else:
raise ValueError(f"cfg.mode should in ['train', 'eval'], but got '{cfg.mode}'")
raise ValueError(
f"cfg.mode should in ['train', 'eval', 'export', 'infer'], but got '{cfg.mode}'"
)


if __name__ == "__main__":
Expand Down