Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【Hackathon 5th No.63】 PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving Spatiotemporal PDEs #674

Merged
merged 48 commits into from
Jan 19, 2024
Merged
Changes from 1 commit
Commits
Show all changes
48 commits
Select commit Hold shift + click to select a range
7be1703
Add files via upload
DUCH714 Nov 30, 2023
ab72152
Create readme.md
DUCH714 Nov 30, 2023
e7839f2
Add files via upload
DUCH714 Nov 30, 2023
e312e95
Update __init__.py
DUCH714 Nov 30, 2023
cd59e45
Add files via upload
DUCH714 Nov 30, 2023
9ff80fd
Add files via upload
DUCH714 Dec 5, 2023
aff3128
add
DUCH714 Dec 11, 2023
ef3b437
add
DUCH714 Dec 17, 2023
93d2003
add
DUCH714 Dec 17, 2023
0137d41
add
DUCH714 Dec 17, 2023
2aeb5da
add
DUCH714 Dec 17, 2023
9a61696
add
DUCH714 Dec 17, 2023
ffe4eae
add
DUCH714 Dec 17, 2023
fe8fcd1
add
DUCH714 Dec 17, 2023
4a39689
add
DUCH714 Dec 17, 2023
a69325c
add
DUCH714 Dec 17, 2023
f07f80e
a
DUCH714 Dec 17, 2023
a84f6db
a
DUCH714 Dec 17, 2023
c82d100
Update phycrnet.md
DUCH714 Dec 18, 2023
a624e06
Update phycrnet.md
DUCH714 Dec 18, 2023
16d3826
Update phycrnet.md
DUCH714 Dec 18, 2023
0be1a3b
a
DUCH714 Dec 18, 2023
d07e75f
d
DUCH714 Dec 19, 2023
6777849
d
DUCH714 Dec 19, 2023
cf422e2
a
DUCH714 Dec 19, 2023
5c3b4d3
a
DUCH714 Dec 20, 2023
8e4f9b5
a
DUCH714 Dec 20, 2023
a0ca809
a
DUCH714 Dec 20, 2023
42b83ec
a
DUCH714 Dec 20, 2023
09f9748
a
DUCH714 Dec 20, 2023
55a04f1
p
DUCH714 Dec 20, 2023
0243783
a
DUCH714 Dec 21, 2023
e24dad2
a
DUCH714 Dec 21, 2023
99674fe
a
DUCH714 Dec 23, 2023
1bde642
update .md file
DUCH714 Jan 8, 2024
21cda0b
update .md file
DUCH714 Jan 8, 2024
5544801
update .md file
DUCH714 Jan 8, 2024
7e63960
Merge branch 'develop' into hackthon5th63
wangguan1995 Jan 9, 2024
1567302
fix
wangguan1995 Jan 11, 2024
82ee391
Merge pull request #2 from DUCH714/phycrnet_fix
DUCH714 Jan 11, 2024
7ede273
edit md
DUCH714 Jan 11, 2024
681f220
eval
DUCH714 Jan 12, 2024
e700721
Merge branch 'develop' into hackthon5th63
wangguan1995 Jan 12, 2024
c3b16e6
m
DUCH714 Jan 16, 2024
0739d7f
m
DUCH714 Jan 16, 2024
d42f7f8
edit
DUCH714 Jan 18, 2024
4e17cdd
edit
DUCH714 Jan 18, 2024
4a1d11d
Merge branch 'develop' into hackthon5th63
wangguan1995 Jan 19, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
a
DUCH714 committed Dec 20, 2023
commit 42b83ecf3fe95ab82494ebb892b2c716f2ff0590
4 changes: 3 additions & 1 deletion docs/zh/examples/phycrnet.md
Original file line number Diff line number Diff line change
@@ -122,7 +122,9 @@ examples/phycrnet/main.py

## 5. 结果展示

本文通过对Burgers' Equation 以及两种reaction-diffusion systems进行训练,所得结果如下:
本文通过对Burgers' Equation进行训练,所得结果如下,根据精度和扩展能力的对比我们可以得出,我们的模型在训练集(t=1.0,2.0)以及拓展集(t=3.0,4.0)上均有良好的表现效果。

![image](https://paddle-org.bj.bcebos.com/paddlescience/docs/NSFNet/PhyCRNet_Burgers.jpeg)
## 6. 结论
本论文通过提出一个新的神经网络PhyCRNet,通过将传统有限差分的思路嵌入物理信息神经网络中,针对性地解决原神经网络缺少对长时间数据的推理能力、误差累积以及缺少泛化能力的问题。与此同时,本文通过类似于有限差分的边界处理方式,将原本边界条件的软限制转为硬限制,大大提高了神经网络的准确性。