Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement activation related operators #4071

Merged
merged 17 commits into from
Sep 21, 2017
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions paddle/operators/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -55,6 +55,13 @@ function(op_library TARGET)
set(pybind_flag 1)
endif()

# activation_op contains several operators
if ("${TARGET}" STREQUAL "activation_op")
set(pybind_flag 1)
# It's enough to just adding one operator to pybind
file(APPEND ${pybind_file} "USE_OP(sigmoid);\n")
endif()

# pybind USE_NO_KERNEL_OP
file(READ ${TARGET}.cc TARGET_CONTENT)
string(REGEX MATCH "OperatorWithKernel" regex_result "${TARGET_CONTENT}")
306 changes: 306 additions & 0 deletions paddle/operators/activation_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,306 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/activation_op.h"

namespace paddle {
namespace operators {

class ActivationOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
ctx.Output<framework::LoDTensor>("Y")->Resize(
ctx.Input<framework::Tensor>("X")->dims());
}
};

class ActivationOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
ctx.Output<framework::LoDTensor>(framework::GradVarName("X"))
->Resize(ctx.Input<framework::Tensor>("Y")->dims());
}
};

class SigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SigmoidOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of Sigmoid operator");
AddOutput("Y", "Output of Sigmoid operator");
AddComment("Sigmoid activation operator, sigmoid = 1 / (1 + exp(-x))");
}
};

class ExpOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ExpOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of Exp operator");
AddOutput("Y", "Output of Exp operator");
AddComment("Exp activation operator, exp(x) = e^x");
}
};

class ReluOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ReluOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of Relu operator");
AddOutput("Y", "Output of Relu operator");
AddComment("Relu activation operator, relu(x) = max(x, 0)");
}
};

class TanhOpMaker : public framework::OpProtoAndCheckerMaker {
public:
TanhOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of Tanh operator");
AddOutput("Y", "Output of Tanh operator");
AddComment(
"Tanh activation operator, tanh = (exp(x) - exp(-x)) / (exp(x) + "
"exp(-x))");
}
};

class SqrtOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SqrtOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of Sqrt operator");
AddOutput("Y", "Output of Sqrt operator");
AddComment("Sqrt activation operator, sqrt(x) = x^(1/2)");
}
};

class AbsOpMaker : public framework::OpProtoAndCheckerMaker {
public:
AbsOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of Abs operator");
AddOutput("Y", "Output of Abs operator");
AddComment("Abs activation operator, abs(x) = |x|");
}
};

class ReciprocalOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ReciprocalOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of Reciprocal operator");
AddOutput("Y", "Output of Reciprocal operator");
AddComment("Reciprocal activation operator, reciprocal(x) = 1 / x");
}
};

class LogOpMaker : public framework::OpProtoAndCheckerMaker {
public:
LogOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of Log operator");
AddOutput("Y", "Output of Log operator");
AddComment("Log activation operator, log(x) = natural logarithm of x");
}
};

class SquareOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SquareOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of Square operator");
AddOutput("Y", "Output of Square operator");
AddComment("Square activation operator, square(x) = x^2");
}
};

template <typename AttrType>
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
public:
BReluOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of BRelu operator");
AddOutput("Y", "Output of BRelu operator");
AddComment("BRelu activation operator, brelu = max(min(x, t_min), t_max)");
AddAttr<AttrType>("t_min", "The min marginal value of BRelu")
.SetDefault(static_cast<AttrType>(0));
AddAttr<AttrType>("t_max", "The max marginal value of BRelu")
.SetDefault(static_cast<AttrType>(24));
}
};

template <typename AttrType>
class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SoftReluOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of SoftRelu operator");
AddOutput("Y", "Output of SoftRelu operator");
AddComment(
"SoftRelu activation operator, soft_relu = log(1 + exp(max(min(x, "
"threshold), threshold)))");
AddAttr<AttrType>("threshold", "The threshold value of SoftRelu")
.SetDefault(static_cast<AttrType>(40));
}
};

template <typename AttrType>
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
public:
PowOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of Pow operator");
AddOutput("Y", "Output of Pow operator");
AddComment("Pow activation operator, pow(x, factor) = x^factor");
AddAttr<AttrType>("factor", "The exponential factor of Pow")
.SetDefault(static_cast<AttrType>(1));
}
};

template <typename AttrType>
class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
public:
STanhOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of STanh operator");
AddOutput("Y", "Output of STanh operator");
AddComment("STanh activation operator, stanh = b * tanh(a * x)");
AddAttr<AttrType>("scale_a", "The scale parameter of a for the input")
.SetDefault(static_cast<AttrType>(2 / 3));
AddAttr<AttrType>("scale_b", "The scale parameter of b for the input")
.SetDefault(static_cast<AttrType>(1.7159));
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(sigmoid, ops::ActivationOp, ops::SigmoidOpMaker, sigmoid_grad,
ops::ActivationOpGrad);
REGISTER_OP_CPU_KERNEL(sigmoid,
ops::ActivationKernel<paddle::platform::CPUPlace, float,
ops::SigmoidFunctor<float>>);
REGISTER_OP_CPU_KERNEL(
sigmoid_grad, ops::ActivationGradKernel<paddle::platform::CPUPlace, float,
ops::SigmoidGradFunctor<float>>);

REGISTER_OP(exp, ops::ActivationOp, ops::ExpOpMaker, exp_grad,
ops::ActivationOpGrad);
REGISTER_OP_CPU_KERNEL(
exp,
ops::ActivationKernel<paddle::platform::CPUPlace, float, ops::ExpFunctor>);
REGISTER_OP_CPU_KERNEL(exp_grad,
ops::ActivationGradKernel<paddle::platform::CPUPlace,
float, ops::ExpGradFunctor>);

REGISTER_OP(relu, ops::ActivationOp, ops::ReluOpMaker, relu_grad,
ops::ActivationOpGrad);
REGISTER_OP_CPU_KERNEL(relu,
ops::ActivationKernel<paddle::platform::CPUPlace, float,
ops::ReluFunctor<float>>);
REGISTER_OP_CPU_KERNEL(
relu_grad, ops::ActivationGradKernel<paddle::platform::CPUPlace, float,
ops::ReluGradFunctor<float>>);

REGISTER_OP(tanh, ops::ActivationOp, ops::TanhOpMaker, tanh_grad,
ops::ActivationOpGrad);
REGISTER_OP_CPU_KERNEL(
tanh,
ops::ActivationKernel<paddle::platform::CPUPlace, float, ops::TanhFunctor>);
REGISTER_OP_CPU_KERNEL(
tanh_grad, ops::ActivationGradKernel<paddle::platform::CPUPlace, float,
ops::TanhGradFunctor<float>>);

REGISTER_OP(sqrt, ops::ActivationOp, ops::SqrtOpMaker, sqrt_grad,
ops::ActivationOpGrad);
REGISTER_OP_CPU_KERNEL(
sqrt,
ops::ActivationKernel<paddle::platform::CPUPlace, float, ops::SqrtFunctor>);
REGISTER_OP_CPU_KERNEL(
sqrt_grad, ops::ActivationGradKernel<paddle::platform::CPUPlace, float,
ops::SqrtGradFunctor<float>>);

REGISTER_OP(abs, ops::ActivationOp, ops::AbsOpMaker, abs_grad,
ops::ActivationOpGrad);
REGISTER_OP_CPU_KERNEL(
abs,
ops::ActivationKernel<paddle::platform::CPUPlace, float, ops::AbsFunctor>);
REGISTER_OP_CPU_KERNEL(abs_grad,
ops::ActivationGradKernel<paddle::platform::CPUPlace,
float, ops::AbsGradFunctor>);

REGISTER_OP(reciprocal, ops::ActivationOp, ops::ReciprocalOpMaker,
reciprocal_grad, ops::ActivationOpGrad);
REGISTER_OP_CPU_KERNEL(reciprocal,
ops::ActivationKernel<paddle::platform::CPUPlace, float,
ops::ReciprocalFunctor<float>>);
REGISTER_OP_CPU_KERNEL(
reciprocal_grad,
ops::ActivationGradKernel<paddle::platform::CPUPlace, float,
ops::ReciprocalGradFunctor<float>>);

REGISTER_OP(log, ops::ActivationOp, ops::LogOpMaker, log_grad,
ops::ActivationOpGrad);
REGISTER_OP_CPU_KERNEL(
log,
ops::ActivationKernel<paddle::platform::CPUPlace, float, ops::LogFunctor>);
REGISTER_OP_CPU_KERNEL(
log_grad, ops::ActivationGradKernel<paddle::platform::CPUPlace, float,
ops::LogGradFunctor<float>>);

REGISTER_OP(square, ops::ActivationOp, ops::SquareOpMaker, square_grad,
ops::ActivationOpGrad);
REGISTER_OP_CPU_KERNEL(square,
ops::ActivationKernel<paddle::platform::CPUPlace, float,
ops::SquareFunctor>);
REGISTER_OP_CPU_KERNEL(
square_grad, ops::ActivationGradKernel<paddle::platform::CPUPlace, float,
ops::SquareGradFunctor<float>>);

REGISTER_OP(brelu, ops::ActivationOp, ops::BReluOpMaker<float>, brelu_grad,
ops::ActivationOpGrad);
REGISTER_OP_CPU_KERNEL(brelu,
ops::BReluKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(brelu_grad,
ops::BReluGradKernel<paddle::platform::CPUPlace, float>);

REGISTER_OP(soft_relu, ops::ActivationOp, ops::SoftReluOpMaker<float>,
soft_relu_grad, ops::ActivationOpGrad);
REGISTER_OP_CPU_KERNEL(soft_relu,
ops::SoftReluKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
soft_relu_grad, ops::SoftReluGradKernel<paddle::platform::CPUPlace, float>);

REGISTER_OP(pow, ops::ActivationOp, ops::PowOpMaker<float>, pow_grad,
ops::ActivationOpGrad);
REGISTER_OP_CPU_KERNEL(pow, ops::PowKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(pow_grad,
ops::PowGradKernel<paddle::platform::CPUPlace, float>);

REGISTER_OP(stanh, ops::ActivationOp, ops::STanhOpMaker<float>, stanh_grad,
ops::ActivationOpGrad);
REGISTER_OP_CPU_KERNEL(stanh,
ops::STanhKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(stanh_grad,
ops::STanhGradKernel<paddle::platform::CPUPlace, float>);
100 changes: 100 additions & 0 deletions paddle/operators/activation_op.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#define EIGEN_USE_GPU
#include "paddle/operators/activation_op.h"

namespace ops = paddle::operators;

REGISTER_OP_GPU_KERNEL(sigmoid,
ops::ActivationKernel<paddle::platform::GPUPlace, float,
ops::SigmoidFunctor<float>>);
REGISTER_OP_GPU_KERNEL(
sigmoid_grad, ops::ActivationGradKernel<paddle::platform::GPUPlace, float,
ops::SigmoidGradFunctor<float>>);

REGISTER_OP_GPU_KERNEL(
exp,
ops::ActivationKernel<paddle::platform::GPUPlace, float, ops::ExpFunctor>);
REGISTER_OP_GPU_KERNEL(exp_grad,
ops::ActivationGradKernel<paddle::platform::GPUPlace,
float, ops::ExpGradFunctor>);
REGISTER_OP_GPU_KERNEL(relu,
ops::ActivationKernel<paddle::platform::GPUPlace, float,
ops::ReluFunctor<float>>);
REGISTER_OP_GPU_KERNEL(
relu_grad, ops::ActivationGradKernel<paddle::platform::GPUPlace, float,
ops::ReluGradFunctor<float>>);

REGISTER_OP_GPU_KERNEL(
tanh,
ops::ActivationKernel<paddle::platform::GPUPlace, float, ops::TanhFunctor>);
REGISTER_OP_GPU_KERNEL(
tanh_grad, ops::ActivationGradKernel<paddle::platform::GPUPlace, float,
ops::TanhGradFunctor<float>>);

REGISTER_OP_GPU_KERNEL(
sqrt,
ops::ActivationKernel<paddle::platform::GPUPlace, float, ops::SqrtFunctor>);
REGISTER_OP_GPU_KERNEL(
sqrt_grad, ops::ActivationGradKernel<paddle::platform::GPUPlace, float,
ops::SqrtGradFunctor<float>>);

REGISTER_OP_GPU_KERNEL(
abs,
ops::ActivationKernel<paddle::platform::GPUPlace, float, ops::AbsFunctor>);
REGISTER_OP_GPU_KERNEL(abs_grad,
ops::ActivationGradKernel<paddle::platform::GPUPlace,
float, ops::AbsGradFunctor>);

REGISTER_OP_GPU_KERNEL(reciprocal,
ops::ActivationKernel<paddle::platform::GPUPlace, float,
ops::ReciprocalFunctor<float>>);
REGISTER_OP_GPU_KERNEL(
reciprocal_grad,
ops::ActivationGradKernel<paddle::platform::GPUPlace, float,
ops::ReciprocalGradFunctor<float>>);

REGISTER_OP_GPU_KERNEL(
log,
ops::ActivationKernel<paddle::platform::GPUPlace, float, ops::LogFunctor>);
REGISTER_OP_GPU_KERNEL(
log_grad, ops::ActivationGradKernel<paddle::platform::GPUPlace, float,
ops::LogGradFunctor<float>>);

REGISTER_OP_GPU_KERNEL(square,
ops::ActivationKernel<paddle::platform::GPUPlace, float,
ops::SquareFunctor>);
REGISTER_OP_GPU_KERNEL(
square_grad, ops::ActivationGradKernel<paddle::platform::GPUPlace, float,
ops::SquareGradFunctor<float>>);

REGISTER_OP_GPU_KERNEL(brelu,
ops::BReluKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(brelu_grad,
ops::BReluGradKernel<paddle::platform::GPUPlace, float>);

REGISTER_OP_GPU_KERNEL(soft_relu,
ops::SoftReluKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
soft_relu_grad, ops::SoftReluGradKernel<paddle::platform::GPUPlace, float>);

REGISTER_OP_GPU_KERNEL(pow, ops::PowKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(pow_grad,
ops::PowGradKernel<paddle::platform::GPUPlace, float>);

REGISTER_OP_GPU_KERNEL(stanh,
ops::STanhKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(stanh_grad,
ops::STanhGradKernel<paddle::platform::GPUPlace, float>);
353 changes: 353 additions & 0 deletions paddle/operators/activation_op.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,353 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

template <typename Place, typename T, typename Functor>
class ActivationKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* X = context.Input<framework::Tensor>("X");
auto* Y = context.Output<framework::Tensor>("Y");
Y->mutable_data<T>(context.GetPlace());

auto x = framework::EigenVector<T>::Flatten(*X);
auto y = framework::EigenVector<T>::Flatten(*Y);
auto place = context.GetEigenDevice<Place>();
Functor functor;
functor(place, x, y);
}
};

template <typename Place, typename T, typename Functor>
class ActivationGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* X = context.Input<framework::Tensor>("X");
auto* Y = context.Input<framework::Tensor>("Y");
auto* dY = context.Input<framework::Tensor>(framework::GradVarName("Y"));
auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
dX->mutable_data<T>(context.GetPlace());

auto dy = framework::EigenVector<T>::Flatten(*dY);
auto x = framework::EigenVector<T>::Flatten(*X);
auto y = framework::EigenVector<T>::Flatten(*Y);
auto dx = framework::EigenVector<T>::Flatten(*dX);
auto place = context.GetEigenDevice<Place>();
Functor functor;
functor(place, x, y, dy, dx);
}
};

// sigmoid(x) = 1 / (1 + exp(-x))
template <typename T>
struct SigmoidFunctor {
template <typename Device, typename X, typename Y>
void operator()(Device d, X x, Y y) {
y.device(d) = static_cast<T>(1) / (static_cast<T>(1) + (-x).exp());
}
};

template <typename T>
struct SigmoidGradFunctor {
template <typename Device, typename X, typename Y, typename dY, typename dX>
void operator()(Device d, X x, Y y, dY dy, dX dx) {
dx.device(d) = dy * y * (static_cast<T>(1) - y);
}
};

// exp(x) = e^x
struct ExpFunctor {
template <typename Device, typename X, typename Y>
void operator()(Device d, X x, Y y) {
y.device(d) = x.exp();
}
};

struct ExpGradFunctor {
template <typename Device, typename X, typename Y, typename dY, typename dX>
void operator()(Device d, X x, Y y, dY dy, dX dx) {
dx.device(d) = dy * y;
}
};

// relu(x) = max(x, 0)
template <typename T>
struct ReluFunctor {
template <typename Device, typename X, typename Y>
void operator()(Device d, X x, Y y) {
y.device(d) = x.cwiseMax(static_cast<T>(0));
}
};

template <typename T>
struct ReluGradFunctor {
template <typename Device, typename X, typename Y, typename dY, typename dX>
void operator()(Device d, X x, Y y, dY dy, dX dx) {
dx.device(d) = dy * (x > static_cast<T>(0)).template cast<T>();
}
};

// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
struct TanhFunctor {
template <typename Device, typename X, typename Y>
void operator()(Device d, X x, Y y) {
y.device(d) = x.tanh();
}
};

template <typename T>
struct TanhGradFunctor {
template <typename Device, typename X, typename Y, typename dY, typename dX>
void operator()(Device d, X x, Y y, dY dy, dX dx) {
dx.device(d) = dy * (static_cast<T>(1) - y * y);
}
};

// sqrt(x) = x^(1/2)
struct SqrtFunctor {
template <typename Device, typename X, typename Y>
void operator()(Device d, X x, Y y) {
y.device(d) = x.sqrt();
}
};

template <typename T>
struct SqrtGradFunctor {
template <typename Device, typename X, typename Y, typename dY, typename dX>
void operator()(Device d, X x, Y y, dY dy, dX dx) {
const Y y_conj = Eigen::numext::conj(y);
dx.device(d) = static_cast<T>(0.5) * dy / y_conj;
}
};

// abs(x) = |x|
struct AbsFunctor {
template <typename Device, typename X, typename Y>
void operator()(Device d, X x, Y y) {
y.device(d) = x.abs();
}
};

struct AbsGradFunctor {
template <typename Device, typename X, typename Y, typename dY, typename dX>
void operator()(Device d, X x, Y y, dY dy, dX dx) {
dx.device(d) = dy * x.sign();
}
};

// reciprocal(x) = 1 / x
template <typename T>
struct ReciprocalFunctor {
template <typename Device, typename X, typename Y>
void operator()(Device d, X x, Y y) {
y.device(d) = static_cast<T>(1) / x;
}
};

template <typename T>
struct ReciprocalGradFunctor {
template <typename Device, typename X, typename Y, typename dY, typename dX>
void operator()(Device d, X x, Y y, dY dy, dX dx) {
dx.device(d) = dy * static_cast<T>(-1) * y * y;
}
};

// log(x) = natural logarithm of x
struct LogFunctor {
template <typename Device, typename X, typename Y>
void operator()(Device d, X x, Y y) {
y.device(d) = x.log();
}
};

template <typename T>
struct LogGradFunctor {
template <typename Device, typename X, typename Y, typename dY, typename dX>
void operator()(Device d, X x, Y y, dY dy, dX dx) {
dx.device(d) = dy * (static_cast<T>(1) / x);
}
};

// square(x) = x^2
struct SquareFunctor {
template <typename Device, typename X, typename Y>
void operator()(Device d, X x, Y y) {
y.device(d) = x.square();
}
};

template <typename T>
struct SquareGradFunctor {
template <typename Device, typename X, typename Y, typename dY, typename dX>
void operator()(Device d, X x, Y y, dY dy, dX dx) {
dx.device(d) = dy * static_cast<T>(2) * x;
}
};

template <typename Place, typename T, typename AttrType = T>
class BReluKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* X = context.Input<framework::Tensor>("X");
auto* Y = context.Output<framework::Tensor>("Y");
auto t_min = static_cast<T>(context.Attr<AttrType>("t_min"));
auto t_max = static_cast<T>(context.Attr<AttrType>("t_max"));
Y->mutable_data<T>(context.GetPlace());

auto x = framework::EigenVector<T>::Flatten(*X);
auto y = framework::EigenVector<T>::Flatten(*Y);
auto place = context.GetEigenDevice<Place>();
y.device(place) = x.cwiseMax(t_min).cwiseMin(t_max);
}
};

template <typename Place, typename T, typename AttrType = T>
class BReluGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* X = context.Input<framework::Tensor>("X");
auto* dY = context.Input<framework::Tensor>(framework::GradVarName("Y"));
auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
auto t_min = static_cast<T>(context.Attr<AttrType>("t_min"));
auto t_max = static_cast<T>(context.Attr<AttrType>("t_max"));
dX->mutable_data<T>(context.GetPlace());

auto dy = framework::EigenVector<T>::Flatten(*dY);
auto x = framework::EigenVector<T>::Flatten(*X);
auto dx = framework::EigenVector<T>::Flatten(*dX);
auto place = context.GetEigenDevice<Place>();

dx.device(place) = dy * ((x > t_min) * (x < t_max)).template cast<T>();
}
};

template <typename Place, typename T, typename AttrType = T>
class SoftReluKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* X = context.Input<framework::Tensor>("X");
auto* Y = context.Output<framework::Tensor>("Y");
auto threshold = static_cast<T>(context.Attr<AttrType>("threshold"));
Y->mutable_data<T>(context.GetPlace());

auto x = framework::EigenVector<T>::Flatten(*X);
auto y = framework::EigenVector<T>::Flatten(*Y);
auto place = context.GetEigenDevice<Place>();
auto temp = x.cwiseMax(-threshold).cwiseMin(threshold).eval();
y.device(place) = (static_cast<T>(1) + temp.exp()).log();
}
};

template <typename Place, typename T, typename AttrType = T>
class SoftReluGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* X = context.Input<framework::Tensor>("X");
auto* Y = context.Input<framework::Tensor>("Y");
auto* dY = context.Input<framework::Tensor>(framework::GradVarName("Y"));
auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
auto threshold = static_cast<T>(context.Attr<AttrType>("threshold"));
dX->mutable_data<T>(context.GetPlace());

auto x = framework::EigenVector<T>::Flatten(*X);
auto y = framework::EigenVector<T>::Flatten(*Y);
auto dy = framework::EigenVector<T>::Flatten(*dY);
auto dx = framework::EigenVector<T>::Flatten(*dX);
auto place = context.GetEigenDevice<Place>();
auto temp = ((x > -threshold) * (x < threshold)).template cast<T>().eval();
dx.device(place) = dy * (static_cast<T>(1) - (-y).exp()) * temp;
}
};

template <typename Place, typename T, typename AttrType = T>
class PowKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* X = context.Input<framework::Tensor>("X");
auto* Y = context.Output<framework::Tensor>("Y");
auto factor = static_cast<T>(context.Attr<AttrType>("factor"));
Y->mutable_data<T>(context.GetPlace());

auto x = framework::EigenVector<T>::Flatten(*X);
auto y = framework::EigenVector<T>::Flatten(*Y);
auto place = context.GetEigenDevice<Place>();
y.device(place) = x.pow(factor);
}
};

template <typename Place, typename T, typename AttrType = T>
class PowGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* X = context.Input<framework::Tensor>("X");
auto* dY = context.Input<framework::Tensor>(framework::GradVarName("Y"));
auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
auto factor = static_cast<T>(context.Attr<AttrType>("factor"));
dX->mutable_data<T>(context.GetPlace());

auto dy = framework::EigenVector<T>::Flatten(*dY);
auto x = framework::EigenVector<T>::Flatten(*X);
auto dx = framework::EigenVector<T>::Flatten(*dX);
auto place = context.GetEigenDevice<Place>();

dx.device(place) = dy * factor * x.pow(factor - static_cast<T>(1));
}
};

template <typename Place, typename T, typename AttrType = T>
class STanhKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* X = context.Input<framework::Tensor>("X");
auto* Y = context.Output<framework::Tensor>("Y");
auto scale_a = static_cast<T>(context.Attr<AttrType>("scale_a"));
auto scale_b = static_cast<T>(context.Attr<AttrType>("scale_b"));
Y->mutable_data<T>(context.GetPlace());

auto x = framework::EigenVector<T>::Flatten(*X);
auto y = framework::EigenVector<T>::Flatten(*Y);
auto place = context.GetEigenDevice<Place>();
y.device(place) = scale_b * (scale_a * x).tanh();
}
};

template <typename Place, typename T, typename AttrType = T>
class STanhGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* X = context.Input<framework::Tensor>("X");
auto* dY = context.Input<framework::Tensor>(framework::GradVarName("Y"));
auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
auto scale_a = static_cast<T>(context.Attr<AttrType>("scale_a"));
auto scale_b = static_cast<T>(context.Attr<AttrType>("scale_b"));
dX->mutable_data<T>(context.GetPlace());

auto dy = framework::EigenVector<T>::Flatten(*dY);
auto x = framework::EigenVector<T>::Flatten(*X);
auto dx = framework::EigenVector<T>::Flatten(*dX);
auto place = context.GetEigenDevice<Place>();

auto temp = (scale_a * x).tanh() * (scale_a * x).tanh();
dx.device(place) = dy * scale_a * scale_b * (static_cast<T>(1) - temp);
}
};

} // namespace operators
} // namespace paddle
67 changes: 0 additions & 67 deletions paddle/operators/sigmoid_op.cc

This file was deleted.

23 changes: 0 additions & 23 deletions paddle/operators/sigmoid_op.cu

This file was deleted.

62 changes: 0 additions & 62 deletions paddle/operators/sigmoid_op.h

This file was deleted.

2 changes: 1 addition & 1 deletion python/paddle/v2/framework/tests/op_test.py
Original file line number Diff line number Diff line change
@@ -206,7 +206,7 @@ def check_output_with_place(self, place):
self.assertTrue(
np.allclose(
actual, expect, atol=1e-05),
"output name: " + out_name + "has diff")
"output name: " + out_name + " has diff")

def check_output(self):
places = [core.CPUPlace()]
223 changes: 223 additions & 0 deletions python/paddle/v2/framework/tests/test_activation_op.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,223 @@
import unittest
import numpy as np
from op_test import OpTest


class TestExp(OpTest):
def setUp(self):
self.op_type = "exp"
self.inputs = {
'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
}
self.outputs = {'Y': np.exp(self.inputs['X'])}

def test_check_output(self):
self.check_output()

def test_check_grad(self):
self.check_grad(['X'], 'Y', max_relative_error=0.007)


class TestSigmoid(OpTest):
def setUp(self):
self.op_type = "sigmoid"
self.inputs = {
'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
}
self.outputs = {'Y': 1 / (1 + np.exp(-self.inputs['X']))}

def test_check_output(self):
self.check_output()

def test_check_grad(self):
self.check_grad(['X'], 'Y', max_relative_error=0.008)


class TestTanh(OpTest):
def setUp(self):
self.op_type = "tanh"
self.inputs = {
'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
}
self.outputs = {'Y': np.tanh(self.inputs['X'])}

def test_check_output(self):
self.check_output()

def test_check_grad(self):
self.check_grad(['X'], 'Y', max_relative_error=0.007)


class TestSqrt(OpTest):
def setUp(self):
self.op_type = "sqrt"
self.inputs = {
'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
}
self.outputs = {'Y': np.sqrt(self.inputs['X'])}

def test_check_output(self):
self.check_output()

def test_check_grad(self):
self.check_grad(['X'], 'Y', max_relative_error=0.007)


class TestAbs(OpTest):
def setUp(self):
self.op_type = "abs"
x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
# Because we set delta = 0.005 in caculating numeric gradient,
# if x is too small, such as 0.002, x_neg will be -0.003
# x_pos will be 0.007, so the numeric gradient is unaccurate.
# we should avoid this
x[np.abs(x) < 0.005] = 0.02
self.inputs = {'X': x}
self.outputs = {'Y': np.abs(self.inputs['X'])}

def test_check_output(self):
self.check_output()

def test_check_grad(self):
self.check_grad(['X'], 'Y', max_relative_error=0.007)


class TestRelu(OpTest):
def setUp(self):
self.op_type = "relu"
x = np.random.uniform(-1, 1, [11, 17]).astype("float32")
# The same reason with TestAbs
x[np.abs(x) < 0.005] = 0.02
self.inputs = {'X': x}
self.outputs = {'Y': np.maximum(self.inputs['X'], 0)}

def test_check_output(self):
self.check_output()

def test_check_grad(self):
self.check_grad(['X'], 'Y', max_relative_error=0.007)


class TestBRelu(OpTest):
def setUp(self):
self.op_type = "brelu"
x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
t_min = 1
t_max = 4
# The same with TestAbs
x[np.abs(x - t_min) < 0.005] = t_min + 0.02
x[np.abs(x - t_max) < 0.005] = t_max + 0.02

self.inputs = {'X': x}
self.attrs = {'t_min': t_min, 't_max': t_max}
t = np.copy(x)
t[t < t_min] = t_min
t[t > t_max] = t_max
self.outputs = {'Y': t}

def test_check_output(self):
self.check_output()

def test_check_grad(self):
self.check_grad(['X'], 'Y', max_relative_error=0.02)


class TestSoftRelu(OpTest):
def setUp(self):
self.op_type = "soft_relu"
x = np.random.uniform(-3, 3, [4, 4]).astype("float32")
threshold = 2
# The same reason with TestAbs
x[np.abs(x - threshold) < 0.005] = threshold + 0.02
x[np.abs(x + threshold) < 0.005] = -threshold + 0.02
self.inputs = {'X': x}
self.attrs = {'threshold': threshold}
t = np.copy(x)
t[t < -threshold] = -threshold
t[t > threshold] = threshold
self.outputs = {'Y': np.log((np.exp(t) + 1))}

def test_check_output(self):
self.check_output()

def test_check_grad(self):
self.check_grad(['X'], 'Y', max_relative_error=0.02)


class TestReciprocal(OpTest):
def setUp(self):
self.op_type = "reciprocal"
self.inputs = {'X': np.random.uniform(1, 2, [11, 17]).astype("float32")}
self.outputs = {'Y': np.reciprocal(self.inputs['X'])}

def test_check_output(self):
self.check_output()

def test_check_grad(self):
self.check_grad(['X'], 'Y', max_relative_error=0.01)


class TestLog(OpTest):
def setUp(self):
self.op_type = "log"
self.inputs = {
'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
}
self.outputs = {'Y': np.log(self.inputs['X'])}

def test_check_output(self):
self.check_output()

def test_check_grad(self):
self.check_grad(['X'], 'Y', max_relative_error=0.007)


class TestSquare(OpTest):
def setUp(self):
self.op_type = "square"
self.inputs = {
'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
}
self.outputs = {'Y': np.square(self.inputs['X'])}

def test_check_output(self):
self.check_output()

def test_check_grad(self):
self.check_grad(['X'], 'Y', max_relative_error=0.007)


class TestPow(OpTest):
def setUp(self):
self.op_type = "pow"
self.inputs = {'X': np.random.uniform(1, 2, [11, 17]).astype("float32")}
self.attrs = {'factor': 3}
self.outputs = {'Y': np.power(self.inputs['X'], 3)}

def test_check_output(self):
self.check_output()

def test_check_grad(self):
self.check_grad(['X'], 'Y', max_relative_error=0.02)


class TestSTanh(OpTest):
def setUp(self):
self.op_type = "stanh"
self.inputs = {
'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
}
scale_a = 2.0 / 3.0
scale_b = 1.7159
self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
self.outputs = {'Y': scale_b * np.tanh(self.inputs['X'] * scale_a)}

def test_check_output(self):
self.check_output()

def test_check_grad(self):
self.check_grad(['X'], 'Y', max_relative_error=0.007)


if __name__ == "__main__":
unittest.main()
22 changes: 0 additions & 22 deletions python/paddle/v2/framework/tests/test_sigmoid_op.py

This file was deleted.