Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add axis for mul_op and rowwise_add_op #3888

Merged
merged 18 commits into from
Sep 8, 2017
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 14 additions & 11 deletions paddle/operators/mul_op.cc
Original file line number Diff line number Diff line change
@@ -27,24 +27,25 @@ class MulOp : public framework::OperatorWithKernel {
void InferShape(const framework::InferShapeContext &ctx) const override {
auto x_dim = ctx.Input<Tensor>("X")->dims();
auto y_dim = ctx.Input<Tensor>("Y")->dims();
int x_num_row_dims = GetAttr<int>("X_num_raw_dims");
int y_num_row_dims = GetAttr<int>("Y_num_raw_dims");
int x_num_row_dims = GetAttr<int>("x_num_row_dims");
int y_num_row_dims = GetAttr<int>("y_num_row_dims");

PADDLE_ENFORCE(x_dim.size() > x_num_row_dims,
"The rank of input tensor X(%s) should be larger than "
"`mul_op`'s `X_num_raw_dims`.",
"`mul_op`'s `x_num_row_dims`.",
ctx.op().Input("X"));
PADDLE_ENFORCE(y_dim.size() > y_num_row_dims,
"The rank of input tensor Y(%s) should be larger than "
"`mul_op`'s `Y_num_raw_dims`.",
"`mul_op`'s `y_num_row_dims`.",
ctx.op().Input("Y"));
PADDLE_ENFORCE_EQ(
product(x_dim, x_dim.size() - x_num_row_dims, x_dim.size()),
product(y_dim, 0, y_dim.size() - y_num_row_dims),
"First matrix's width must be equal with second matrix's height.");
ctx.Output<Tensor>("Out")->Resize(
{product(x_dim, 0, x_dim.size() - x_num_row_dims),
product(y_dim, y_dim.size() - y_num_row_dims, y_dim.size())});
{static_cast<int>(product(x_dim, 0, x_dim.size() - x_num_row_dims)),
static_cast<int>(
product(y_dim, y_dim.size() - y_num_row_dims, y_dim.size()))});
}
};

@@ -96,13 +97,15 @@ class MulOpGrad : public framework::OperatorWithKernel {
auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
auto *y_grad = ctx.Output<Tensor>(framework::GradVarName("Y"));
PADDLE_ENFORCE(
product(x_dim, 0, x_dims.size() - x_num_row_dims) == out_dims[0],
product(x_dims, 0, x_dims.size() - GetAttr<int>("x_num_row_dims")) ==
out_dims[0],
"The first dimension of Out@GRAD must equal to the first dimension of "
"the first operand.");
PADDLE_ENFORCE(product(y_dim, y_dims.size() - y_num_row_dims,
y_dims.size()) == out_dims[1],
"The second dimension of Out@GRAD must equal to the second "
"dimension of the second operand.");
PADDLE_ENFORCE(
product(y_dims, y_dims.size() - GetAttr<int>("y_num_row_dims"),
y_dims.size()) == out_dims[1],
"The second dimension of Out@GRAD must equal to the second "
"dimension of the second operand.");

x_grad->Resize(x_dims);
y_grad->Resize(y_dims);
50 changes: 39 additions & 11 deletions paddle/operators/mul_op.h
Original file line number Diff line number Diff line change
@@ -31,34 +31,62 @@ template <typename Place, typename T>
class MulKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* X = context.Input<Tensor>("X");
auto* Y = context.Input<Tensor>("Y");
auto* Z = context.Output<Tensor>("Out");
const Tensor* X = context.Input<Tensor>("X");
const Tensor* Y = context.Input<Tensor>("Y");
Tensor* Z = context.Output<Tensor>("Out");
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Z -> z

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

const Tensor X_matrix =
X->dims().size() > 2
? framework::FlattenToMatrix<T>(
*X, context.template GetAttr<int>("x_num_row_dims"))
: *X;
const Tensor Y_matrix =
Y->dims().size() > 2
? framework::FlattenToMatrix<T>(
*Y, context.template GetAttr<int>("y_num_row_dims"))
: *Y;

Z->mutable_data<T>(context.GetPlace());
auto* device_context =
const_cast<platform::DeviceContext*>(context.device_context_);
math::matmul<Place, T>(*X, false, *Y, false, 1, Z, 0, device_context);
math::matmul<Place, T>(X_matrix, false, Y_matrix, false, 1, Z, 0,
device_context);
}
};

template <typename Place, typename T>
class MulGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* X = ctx.Input<Tensor>("X");
auto* Y = ctx.Input<Tensor>("Y");
auto* dOut = ctx.Input<Tensor>(framework::GradVarName("Out"));
int x_num_row_dims = ctx.template GetAttr<int>("x_num_row_dims");
int y_num_row_dims = ctx.template GetAttr<int>("y_num_row_dims");
const Tensor* X = ctx.Input<Tensor>("X");
const Tensor* Y = ctx.Input<Tensor>("Y");
const Tensor X_matrix =
X->dims().size() > 2 ? framework::FlattenToMatrix<T>(*X, x_num_row_dims)
: *X;
const Tensor Y_matrix =
Y->dims().size() > 2 ? framework::FlattenToMatrix<T>(*Y, y_num_row_dims)
: *Y;
const Tensor* dOut = ctx.Input<Tensor>(framework::GradVarName("Out"));

auto* dX = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dY = ctx.Output<Tensor>(framework::GradVarName("Y"));
Tensor* dX = ctx.Output<Tensor>(framework::GradVarName("X"));
Tensor* dY = ctx.Output<Tensor>(framework::GradVarName("Y"));
dX->mutable_data<T>(ctx.GetPlace());
dY->mutable_data<T>(ctx.GetPlace());
Tensor dX_matrix = dX->dims().size() > 2
? framework::FlattenToMatrix<T>(*dX, x_num_row_dims)
: *dX;
Tensor dY_matrix = dY->dims().size() > 2
? framework::FlattenToMatrix<T>(*dY, y_num_row_dims)
: *dY;
auto* device_context =
const_cast<platform::DeviceContext*>(ctx.device_context_);
// dX = dOut * Y'. dX: M x K, dOut : M x N, Y : K x N
math::matmul<Place, T>(*dOut, false, *Y, true, 1, dX, 0, device_context);
math::matmul<Place, T>(*dOut, false, Y_matrix, true, 1, &dX_matrix, 0,
device_context);
// dY = X' * dOut. dY: K x N, dOut : M x N, X : M x K
math::matmul<Place, T>(*X, true, *dOut, false, 1, dY, 0, device_context);
math::matmul<Place, T>(X_matrix, true, *dOut, false, 1, &dY_matrix, 0,
device_context);
}
};