Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

init mnist #3564

Merged
merged 18 commits into from
Aug 24, 2017
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions python/paddle/v2/framework/tests/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -27,3 +27,4 @@ py_test(test_uniform_random_op SRCS test_uniform_random_op.py)
py_test(test_recurrent_op SRCS test_recurrent_op.py)
py_test(test_sgd_op SRCS test_sgd_op.py)
py_test(test_gradient_checker SRCS test_gradient_checker.py)
py_test(mnist SRCS mnist.py)
208 changes: 208 additions & 0 deletions python/paddle/v2/framework/tests/mnist.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,208 @@
import paddle.v2.framework.core as core
from paddle.v2.framework.op import Operator
import numpy
import paddle.v2 as paddle

BATCH_SIZE = 100

scope = core.Scope()
place = core.CPUPlace()
dev_ctx = core.DeviceContext.create(place)

# init_net = core.Net.create()
forward_network = core.Net.create()

# should be init after forward_op is constructed
# backward_net = core.Operator.backward(forward_net, set())
backward_net = None
optimize_net = core.Net.create()


def atom_id():
id = 0
while True:
yield id
id += 1


uniq_id = atom_id().next


def data_layer(name, dims):
var = scope.new_var(name)
tensor = var.get_tensor()
tensor.set_dims(dims) # 1 is batch size holder.
return name


def feed_data(name, data):
assert isinstance(data, numpy.ndarray)
tensor = scope.find_var(name).get_tensor()
tensor.set_dims(data.shape)
if data.dtype == numpy.dtype('int32'):
tensor.alloc_int(place)
elif data.dtype == numpy.dtype('float32'):
tensor.alloc_float(place)
else:
raise ValueError("data type not supported")
tensor.set(data, place)


def grad_var_name(var_name):
return var_name + "@GRAD"


def sgd_optimizer(net, param_name, learning_rate=0.001):
grad_name = grad_var_name(param_name)
optimize_op = Operator(
"sgd",
param=param_name,
grad=grad_name,
param_out=param_name,
learning_rate=learning_rate)
net.add_op(optimize_op)


# should use operator and add these to the init_network
def init_param(param_name, dims):
var = scope.new_var(param_name)
tensor = var.get_tensor()
tensor.set_dims(dims)
data = numpy.random.uniform(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

as a demo, maybe we better use the built-in operator?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

low=0.0, high=1.0, size=tensor.shape()).astype("float32")
tensor.set(data, place)


# fc_layer
def fc_layer(net, input, size, act="softmax", bias=True, param=None, name=None):
"""
Add a fc layer to net

:param input: input variable name.
:type input: str
:param size: fully connected layer size.
:param act: activation name
:param param: parameter attribute, used for initialize parameters.
:param bias: bias attribute. False will not have a bias.
:param name: the name of fc layer. If not set, model will generate a
readable name
:return: output variable name.
"""
if name is None:
name = 'fc_%d' % uniq_id()
if not isinstance(name, str):
raise ValueError("name should be string")

input_dims = scope.find_var(input).get_tensor().get_dims()

w_name = param or name + ".w"
init_param(param_name=w_name, dims=[input_dims[1], size])
sgd_optimizer(net=optimize_net, param_name=w_name, learning_rate=0.01)

pre_activation = name + ".mul.out"
scope.new_var(pre_activation)
mul_op = Operator("mul", X=input, Y=w_name, Out=pre_activation)
net.add_op(mul_op)

# create bias variable if needed
if bias:
bias_name = name + ".b"
init_param(param_name=bias_name, dims=[size])
sgd_optimizer(
net=optimize_net, param_name=bias_name, learning_rate=0.01)
bias_out = name + ".rowwise_add.out"
scope.new_var(bias_out)
rowwise_add_op = Operator(
"rowwise_add", X=pre_activation, b=bias_name, Out=bias_out)
net.add_op(rowwise_add_op)
pre_activation = bias_out

activation_op = Operator(act, X=pre_activation, Y=name)
net.add_op(activation_op)
scope.new_var(name)
net.infer_shape(scope)
return name


def cross_entropy_layer(net, input, label):
cost_name = 'cross_entropy_%d' % uniq_id()
cross_entropy_op = Operator(
"onehot_cross_entropy", X=input, label=label, Y=cost_name)
net.add_op(cross_entropy_op)
scope.new_var(cost_name)
net.infer_shape(scope)
return cost_name


def get_backward_net(forward_net):
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

create_backward_net

net = core.Operator.backward(forward_net, set())
for input in net.inputs()["all"]:
var = scope.new_var(input)
var.get_tensor()
for output in net.outputs()["all"]:
var = scope.new_var(output)
var.get_tensor()
return net


def print_inputs_outputs(op):
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

debug_print_op

print("===============" + op.type() + "==============")
print("***inputs:***")
for input in op.inputs()["all"]:
print input, scope.find_var(input).get_tensor().get_dims()
print("***outputs:***")
for output in op.outputs()["all"]:
print output, scope.find_var(output).get_tensor().get_dims()
print("")
print("")


def set_cost():
cost_data = numpy.array(scope.find_var("cross_entropy_1").get_tensor())
# print(cost_data)
print(cost_data.sum() / len(cost_data))

cost_grad = scope.find_var(grad_var_name("cross_entropy_1")).get_tensor()
cost_grad.set_dims(cost_data.shape)
cost_grad.alloc_float(place)
cost_grad.set(cost_data, place)


images = data_layer(name='pixel', dims=[BATCH_SIZE, 784])
label = data_layer(name='label', dims=[BATCH_SIZE])
fc = fc_layer(net=forward_network, input=images, size=10, act="softmax")
cost = cross_entropy_layer(net=forward_network, input=fc, label=label)

forward_network.complete_add_op(True)
backward_net = get_backward_net(forward_network)
optimize_net.complete_add_op(True)

print(forward_network)
print(backward_net)
print(optimize_net)

print_inputs_outputs(forward_network)
print_inputs_outputs(backward_net)
print_inputs_outputs(optimize_net)

reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=8192),
batch_size=BATCH_SIZE)

PASS_NUM = 1000
for pass_id in range(PASS_NUM):
data = reader().next()

image = numpy.array(map(lambda x: x[0], data)).astype("float32")
label = numpy.array(map(lambda x: x[1], data)).astype("int32")
feed_data("pixel", image)
feed_data("label", label)

forward_network.infer_shape(scope)
forward_network.run(scope, dev_ctx)
set_cost()
backward_net.infer_shape(scope)
backward_net.run(scope, dev_ctx)

optimize_net.run(scope, dev_ctx)