Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

init mnist #3564

Merged
merged 18 commits into from
Aug 24, 2017
Merged
Show file tree
Hide file tree
Changes from 17 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions python/paddle/v2/framework/tests/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -29,3 +29,4 @@ py_test(test_recurrent_op SRCS test_recurrent_op.py)
py_test(test_sgd_op SRCS test_sgd_op.py)
py_test(test_gradient_checker SRCS test_gradient_checker.py)
py_test(test_scale_and_identity_op SRCS test_scale_and_identity_op.py)
py_test(mnist SRCS mnist.py)
249 changes: 249 additions & 0 deletions python/paddle/v2/framework/tests/mnist.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,249 @@
import paddle.v2.framework.core as core
from paddle.v2.framework.op import Operator
import numpy
import paddle.v2 as paddle

BATCH_SIZE = 100

scope = core.Scope()
place = core.CPUPlace()
# if you want to test GPU training, you can use gpu place
# place = core.GPUPlace(0)
dev_ctx = core.DeviceContext.create(place)

init_net = core.Net.create()
forward_net = core.Net.create()
backward_net = None
optimize_net = core.Net.create()


def atom_id():
id = 0
while True:
yield id
id += 1


uniq_id = atom_id().next


def data_layer(name, dims):
var = scope.new_var(name)
tensor = var.get_tensor()
tensor.set_dims(dims) # 1 is batch size holder.
return name


def feed_data(name, data):
assert isinstance(data, numpy.ndarray)
tensor = scope.find_var(name).get_tensor()
tensor.set_dims(data.shape)
if data.dtype == numpy.dtype('int32'):
tensor.alloc_int(place)
elif data.dtype == numpy.dtype('float32'):
tensor.alloc_float(place)
else:
raise ValueError("data type not supported")
tensor.set(data, place)


def grad_var_name(var_name):
return var_name + "@GRAD"


def sgd_optimizer(net, param_name, learning_rate=0.005):
grad_name = grad_var_name(param_name)
optimize_op = Operator(
"sgd",
param=param_name,
grad=grad_name,
param_out=param_name,
learning_rate=learning_rate)
net.append_op(optimize_op)


# should use operator and add these to the init_network
def init_param(net, param_name, dims):
scope.new_var(param_name)
op = Operator(
"uniform_random", Out=param_name, dims=dims, min=-0.5, max=0.5, seed=10)
op.infer_shape(scope)
net.append_op(op)


# fc_layer
def fc_layer(net, input, size, act="softmax", bias=True, param=None, name=None):
"""
Add a fc layer to net

:param input: input variable name.
:type input: str
:param size: fully connected layer size.
:param act: activation name
:param param: parameter attribute, used for initialize parameters.
:param bias: bias attribute. False will not have a bias.
:param name: the name of fc layer. If not set, model will generate a
readable name
:return: output variable name.
"""
if name is None:
name = 'fc_%d' % uniq_id()
if not isinstance(name, str):
raise ValueError("name should be string")

input_dims = scope.find_var(input).get_tensor().get_dims()

w_name = param or name + ".w"
init_param(net=init_net, param_name=w_name, dims=[input_dims[1], size])
sgd_optimizer(net=optimize_net, param_name=w_name, learning_rate=0.01)

pre_activation = name + ".mul.out"
scope.new_var(pre_activation)
mul_op = Operator("mul", X=input, Y=w_name, Out=pre_activation)
net.append_op(mul_op)

# create bias variable if needed
if bias:
bias_name = name + ".b"
init_param(net=init_net, param_name=bias_name, dims=[size])
sgd_optimizer(
net=optimize_net, param_name=bias_name, learning_rate=0.001)
bias_out = name + ".rowwise_add.out"
scope.new_var(bias_out)
rowwise_append_op = Operator(
"rowwise_add", X=pre_activation, b=bias_name, Out=bias_out)
net.append_op(rowwise_append_op)
pre_activation = bias_out

activation_op = Operator(act, X=pre_activation, Y=name)
net.append_op(activation_op)
scope.new_var(name)
net.infer_shape(scope)
return name


def cross_entropy_layer(net, input, label):
cost_name = 'cross_entropy_%d' % uniq_id()
cross_entropy_op = Operator(
"onehot_cross_entropy", X=input, label=label, Y=cost_name)
net.append_op(cross_entropy_op)
scope.new_var(cost_name)
net.infer_shape(scope)
return cost_name


def create_backward_net(forward_net):
net = core.Operator.backward(forward_net, set())
for input in net.inputs()["all"]:
var = scope.new_var(input)
var.get_tensor()
for output in net.outputs()["all"]:
var = scope.new_var(output)
var.get_tensor()
return net


def debug_print_op(op):
print("===============" + op.type() + "==============")
print("***inputs:***")
for input in op.inputs()["all"]:
print input, scope.find_var(input).get_tensor().get_dims()
print("\n***outputs:***")
for output in op.outputs()["all"]:
print output, scope.find_var(output).get_tensor().get_dims()
print("")
print("")


def set_cost(cost):
cost_shape = numpy.array(scope.find_var(cost).get_tensor()).shape
cost_grad = \
scope.find_var(grad_var_name(cost)).get_tensor()
cost_grad.set_dims(cost_shape)
cost_grad.alloc_float(place)
cost_grad.set(numpy.ones(cost_shape).astype("float32"), place)


def mean_cost(cost):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

mean cost get the cross_entropy output for debugging. we'd better rename this snippet.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

cost_data = numpy.array(scope.find_var(cost).get_tensor())
return cost_data.sum() / len(cost_data)


def error_rate(predict, label):
predict_var = numpy.array(scope.find_var(predict).get_tensor()).argmax(
axis=1)
label = numpy.array(scope.find_var(label).get_tensor())
error_num = numpy.sum(predict_var != label)
return error_num / float(len(label))


images = data_layer(name='pixel', dims=[BATCH_SIZE, 784])
labels = data_layer(name='label', dims=[BATCH_SIZE])
fc1 = fc_layer(net=forward_net, input=images, size=100, act="sigmoid")
fc2 = fc_layer(net=forward_net, input=fc1, size=100, act="sigmoid")
predict = fc_layer(net=forward_net, input=fc2, size=100, act="softmax")
cost = cross_entropy_layer(net=forward_net, input=predict, label=labels)

init_net.complete_add_op(True)
forward_net.complete_add_op(True)
backward_net = create_backward_net(forward_net)
optimize_net.complete_add_op(True)

print(init_net)
print(forward_net)
print(backward_net)
print(optimize_net)

debug_print_op(forward_net)
debug_print_op(backward_net)
debug_print_op(optimize_net)

train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=8192),
batch_size=BATCH_SIZE)


def test(cost_name):
test_reader = paddle.batch(
paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
cost = []
error = []
for data in test_reader():
image_data = numpy.array(map(lambda x: x[0], data)).astype("float32")
label_data = numpy.array(map(lambda x: x[1], data)).astype("int32")
feed_data(images, image_data)
feed_data(labels, label_data)

forward_net.infer_shape(scope)
forward_net.run(scope, dev_ctx)
cost.append(mean_cost(cost_name))
error.append(error_rate(predict, "label"))
print("cost=" + str(sum(cost) / float(len(cost))) + " error_rate=" + str(
sum(error) / float(len(error))))


PASS_NUM = 1

init_net.run(scope, dev_ctx)
for pass_id in range(PASS_NUM):
batch_id = 0

for data in train_reader():
image_data = numpy.array(map(lambda x: x[0], data)).astype("float32")
label_data = numpy.array(map(lambda x: x[1], data)).astype("int32")
feed_data(images, image_data)
feed_data(labels, label_data)

forward_net.infer_shape(scope)
forward_net.run(scope, dev_ctx)
set_cost(cost)
backward_net.infer_shape(scope)
backward_net.run(scope, dev_ctx)

optimize_net.run(scope, dev_ctx)
if batch_id % 100 == 0:
print("pass[" + str(pass_id) + "] batch_id[" + str(batch_id) + "]")
test(cost)

batch_id = batch_id + 1