Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[API 2.0] add pool2d3d API,test=develop #26331

Merged
merged 12 commits into from
Aug 24, 2020
375 changes: 375 additions & 0 deletions python/paddle/fluid/tests/unittests/test_pool2d_api.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,375 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from test_pool2d_op import adaptive_start_index, adaptive_end_index, pool2D_forward_naive
import unittest
from op_test import OpTest
import numpy as np
import paddle.fluid.core as core
from paddle.nn.functional import *
import paddle.fluid as fluid
import paddle


class TestPool2d_API(unittest.TestCase):
def setUp(self):
np.random.seed(123)
self.places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
self.places.append(fluid.CUDAPlace(0))

def check_avg_static_results(self, place):
with fluid.program_guard(fluid.Program(), fluid.Program()):
input = fluid.data(
name="input", shape=[2, 3, 32, 32], dtype="float32")
result = avg_pool2d(input, kernel_size=2, stride=2, padding=0)

input_np = np.random.random([2, 3, 32, 32]).astype("float32")
result_np = pool2D_forward_naive(
input_np,
ksize=[2, 2],
strides=[2, 2],
paddings=[0, 0],
pool_type='avg')

exe = fluid.Executor(place)
fetches = exe.run(fluid.default_main_program(),
feed={"input": input_np},
fetch_list=[result])
self.assertTrue(np.allclose(fetches[0], result_np))

def check_avg_dygraph_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = avg_pool2d(input, kernel_size=2, stride=2, padding=0)

result_np = pool2D_forward_naive(
input_np,
ksize=[2, 2],
strides=[2, 2],
paddings=[0, 0],
pool_type='avg')
self.assertTrue(np.allclose(result.numpy(), result_np))

avg_pool2d_dg = paddle.nn.layer.AvgPool2d(
kernel_size=2, stride=2, padding=0)
result = avg_pool2d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))

def check_max_static_results(self, place):
with fluid.program_guard(fluid.Program(), fluid.Program()):
input = fluid.data(
name="input", shape=[2, 3, 32, 32], dtype="float32")
result = max_pool2d(input, kernel_size=2, stride=2, padding=0)

input_np = np.random.random([2, 3, 32, 32]).astype("float32")
result_np = pool2D_forward_naive(
input_np,
ksize=[2, 2],
strides=[2, 2],
paddings=[0, 0],
pool_type='max')

exe = fluid.Executor(place)
fetches = exe.run(fluid.default_main_program(),
feed={"input": input_np},
fetch_list=[result])
self.assertTrue(np.allclose(fetches[0], result_np))

def check_max_dygraph_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = max_pool2d(
input, kernel_size=2, stride=2, padding=0, return_indices=False)

result_np = pool2D_forward_naive(
input_np,
ksize=[2, 2],
strides=[2, 2],
paddings=[0, 0],
pool_type='max')
self.assertTrue(np.allclose(result.numpy(), result_np))

max_pool2d_dg = paddle.nn.layer.MaxPool2d(
kernel_size=2, stride=2, padding=0)
result = max_pool2d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))

def check_max_dygraph_stride_is_none(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result, indices = max_pool2d(
input,
kernel_size=2,
stride=None,
padding="SAME",
return_indices=True)

result_np = pool2D_forward_naive(
input_np,
ksize=[2, 2],
strides=[2, 2],
paddings=[0, 0],
pool_type='max',
padding_algorithm="SAME")
self.assertTrue(np.allclose(result.numpy(), result_np))

max_pool2d_dg = paddle.nn.layer.MaxPool2d(
kernel_size=2, stride=2, padding=0)
result = max_pool2d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))

def check_avg_dygraph_stride_is_none(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = avg_pool2d(
input, kernel_size=2, stride=None, padding="SAME")

result_np = pool2D_forward_naive(
input_np,
ksize=[2, 2],
strides=[2, 2],
paddings=[0, 0],
pool_type='avg',
padding_algorithm="SAME")
self.assertTrue(np.allclose(result.numpy(), result_np))

avg_pool2d_dg = paddle.nn.layer.AvgPool2d(
kernel_size=2, stride=2, padding=0)
result = avg_pool2d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))

def check_max_dygraph_padding(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
padding = [[0, 0], [0, 0], [0, 0], [0, 0]]
result = max_pool2d(
input,
kernel_size=2,
stride=2,
padding=padding,
return_indices=False)

result_np = pool2D_forward_naive(
input_np,
ksize=[2, 2],
strides=[2, 2],
paddings=[0, 0],
pool_type='max')
self.assertTrue(np.allclose(result.numpy(), result_np))

max_pool2d_dg = paddle.nn.layer.MaxPool2d(
kernel_size=2, stride=2, padding=0)
result = max_pool2d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))

def check_avg_divisor(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
padding = [[0, 0], [0, 0], [0, 0], [0, 0]]
result = avg_pool2d(
input,
kernel_size=2,
stride=2,
padding=padding,
divisor_override=4)

result_np = pool2D_forward_naive(
input_np,
ksize=[2, 2],
strides=[2, 2],
paddings=[0, 0],
pool_type='avg')
self.assertTrue(np.allclose(result.numpy(), result_np))

avg_pool2d_dg = paddle.nn.layer.AvgPool2d(
kernel_size=2, stride=2, padding=0)
result = avg_pool2d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))

def test_pool2d(self):
for place in self.places:

self.check_max_dygraph_results(place)
self.check_avg_dygraph_results(place)
self.check_max_static_results(place)
self.check_avg_static_results(place)
self.check_max_dygraph_stride_is_none(place)
self.check_avg_dygraph_stride_is_none(place)
self.check_max_dygraph_padding(place)
self.check_avg_divisor(place)


class TestPool2dError_API(unittest.TestCase):
def test_error_api(self):
def run1():
with fluid.dygraph.guard():
input_np = np.random.uniform(-1, 1,
[2, 3, 32, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
padding = [[0, 1], [0, 0], [0, 0], [0, 0]]
res_pd = max_pool2d(
input_pd, kernel_size=2, stride=2, padding=padding)

self.assertRaises(ValueError, run1)

def run2():
with fluid.dygraph.guard():
input_np = np.random.uniform(-1, 1,
[2, 3, 32, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
padding = [[0, 1], [0, 0], [0, 0], [0, 0]]
res_pd = max_pool2d(
input_pd,
kernel_size=2,
stride=2,
padding=padding,
data_format='NHWC')

self.assertRaises(ValueError, run2)

def run3():
with fluid.dygraph.guard():
input_np = np.random.uniform(-1, 1,
[2, 3, 32, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
padding = "padding"
res_pd = max_pool2d(
input_pd,
kernel_size=2,
stride=2,
padding=padding,
data_format='NHWC')

self.assertRaises(ValueError, run3)

def run3_avg():
with fluid.dygraph.guard():
input_np = np.random.uniform(-1, 1,
[2, 3, 32, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
padding = "padding"
res_pd = avg_pool2d(
input_pd,
kernel_size=2,
stride=2,
padding=padding,
data_format='NHWC')

self.assertRaises(ValueError, run3_avg)

def run4():
with fluid.dygraph.guard():
input_np = np.random.uniform(-1, 1,
[2, 3, 32, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
padding = "VALID"
res_pd = max_pool2d(
input_pd,
kernel_size=2,
stride=2,
padding=padding,
ceil_mode=True,
data_format='NHWC')

self.assertRaises(ValueError, run4)

def run4_avg():
with fluid.dygraph.guard():
input_np = np.random.uniform(-1, 1,
[2, 3, 32, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
padding = "VALID"
res_pd = avg_pool2d(
input_pd,
kernel_size=2,
stride=2,
padding=padding,
ceil_mode=True,
data_format='NHWC')

self.assertRaises(ValueError, run4_avg)

def run5():
with fluid.dygraph.guard():
input_np = np.random.uniform(-1, 1,
[2, 3, 32, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
padding = "padding"
res_pd = avg_pool2d(
input_pd,
kernel_size=2,
stride=2,
padding=padding,
data_format='NHWC')

self.assertRaises(ValueError, run5)

def run6():
with fluid.dygraph.guard():
input_np = np.random.uniform(-1, 1,
[2, 3, 32, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
padding = "VALID"
res_pd = avg_pool2d(
input_pd,
kernel_size=2,
stride=2,
padding=padding,
ceil_mode=True,
data_format='NHWC')

self.assertRaises(ValueError, run6)

def run7():
with fluid.dygraph.guard():
input_np = np.random.uniform(-1, 1,
[2, 3, 32, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
padding = "VALID"
res_pd = avg_pool2d(
input_pd,
kernel_size=2,
stride=2,
padding=padding,
ceil_mode=False,
data_format='NNNN')

self.assertRaises(ValueError, run7)

def run8():
with fluid.dygraph.guard():
input_np = np.random.uniform(-1, 1,
[2, 3, 32, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
padding = "VALID"
res_pd = max_pool2d(
input_pd,
kernel_size=2,
stride=2,
padding=padding,
ceil_mode=False,
data_format='NNNN')

self.assertRaises(ValueError, run8)


if __name__ == '__main__':
unittest.main()
Loading