Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add FAQ #128

Merged
merged 9 commits into from
Oct 17, 2016
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .travis.yml
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@ addons:
- libgoogle-glog-dev
- libgflags-dev
- libgtest-dev
- graphviz
before_install:
- pip install wheel protobuf sphinx breathe recommonmark
- sudo paddle/scripts/travis/before_install.sh
Expand Down
1 change: 1 addition & 0 deletions doc_cn/conf.py.in
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,7 @@ extensions = [
'sphinx.ext.autosummary',
'sphinx.ext.mathjax',
'sphinx.ext.napoleon',
'sphinx.ext.graphviz'
]
table_styling_embed_css = True

Expand Down
169 changes: 169 additions & 0 deletions doc_cn/faq/index.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,169 @@
####################
PaddlePaddle常见问题
####################

.. contents::

1. 如何减少PaddlePaddle的内存占用
---------------------------------

神经网络的训练本身是一个非常消耗内存和显存的工作。经常会消耗数十G的内存和数G的显存。
PaddlePaddle的内存占用主要分为如下几个方面\:

* DataProvider缓冲池内存 (只针对内存)
* 神经元激活内存 (针对内存和显存)
* 参数内存 (针对内存和显存)
* 其他内存杂项

这其中,其他内存杂项是指PaddlePaddle本身所用的一些内存,包括字符串分配,临时变量等等,
这些内存就不考虑如何缩减了。

其他的内存的减少方法依次为


减少DataProvider缓冲池内存
++++++++++++++++++++++++++

PyDataProvider使用的是异步加载,同时在内存里直接随即选取数据来做Shuffle。即
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

感觉是否可以另外开一个FAQ issue, 稍微详细介绍下shuffle


.. graphviz::

digraph {
rankdir=LR;
数据文件 -> 内存池 -> PaddlePaddle训练
}

所以,减小这个内存池即可减小内存占用,同时也可以加速开始训练前数据载入的过程。但是,这
个内存池实际上决定了shuffle的粒度。所以,如果将这个内存池减小,又要保证数据是随机的,
那么最好将数据文件在每次读取之前做一次shuffle。可能的代码为

.. literalinclude:: reduce_min_pool_size.py

这样做可以极大的减少内存占用,并且可能会加速训练过程。 详细文档参考 `这里
<../ui/data_provider/pydataprovider2.html#provider>`_ 。

神经元激活内存
++++++++++++++

神经网络在训练的时候,会对每一个激活暂存一些数据,包括激活,參差等等。
在反向传递的时候,这些数据会被用来更新参数。这些数据使用的内存主要和两个参数有关系,
一是batch size,另一个是每条序列(Sequence)长度。所以,其实也是和每个mini-batch中包含
的时间步信息成正比。

所以,做法可以有两种。他们是

* 减小batch size。 即在网络配置中 :code:`settings(batch_size=1000)` 设置成一个小一些的值。但是batch size本身是神经网络的超参数,减小batch size可能会对训练结果产生影响。
* 减小序列的长度,或者直接扔掉非常长的序列。比如,一个数据集大部分序列长度是100-200,
但是突然有一个10000长的序列,就很容易导致内存超限。特别是在LSTM等RNN中。

参数内存
++++++++

PaddlePaddle支持非常多的优化算法(Optimizer),不同的优化算法需要使用不同大小的内存。
例如如果使用 :code:`adadelta` 算法,则需要使用参数规模大约5倍的内存。 如果参数保存下来的
文件为 :code:`100M`, 那么该优化算法至少需要 :code:`500M` 的内存。

可以考虑使用一些优化算法,例如 :code:`momentum`。

2. 如何加速PaddlePaddle的训练速度
---------------------------------

PaddlePaddle是神经网络训练平台,加速PaddlePaddle训练有如下几个方面\:

* 减少数据载入的耗时
* 加速训练速度
* 利用更多的计算资源

减少数据载入的耗时
++++++++++++++++++

使用 :code:`pydataprovider`时,可以减少缓存池的大小,同时设置内存缓存功能,即可以极大的加速数据载入流程。
:code:`DataProvider` 缓存池的减小,和之前减小通过减小缓存池来减小内存占用的原理一致。

.. literalinclude:: reduce_min_pool_size.py

同时 :code:`@provider` 接口有一个 :code:`cache` 参数来控制缓存方法,将其设置成 :code:`CacheType.CACHE_PASS_IN_MEM` 的话,会将第一个 :code:`pass` (过完所有训练数据即为一个pass)生成的数据缓存在内存里,在之后的 :code:`pass` 中,不会再从 :code:`python` 端读取数据,而是直接从内存的缓存里读取数据。这也会极大减少数据读入的耗时。


加速训练速度
++++++++++++

PaddlePaddle支持Sparse的训练,sparse训练需要训练特征是 :code:`sparse_binary_vector` 、 :code:`sparse_vector` 、或者 :code:`integer_value` 的任一一种。同时,与这个训练数据交互的Layer,需要将其Parameter设置成 sparse 更新模式,即设置 :code:`sparse_update=True`

这里使用简单的 :code:`word2vec` 训练语言模型距离,具体使用方法为\:

使用一个词前两个词和后两个词,来预测这个中间的词。这个任务的DataProvider为\:

.. literalinclude:: word2vec_dataprovider.py

这个任务的配置为\:

.. literalinclude:: word2vec_config.py

更多关于sparse训练的内容请参考 `sparse训练的文档 <TBD>`_

利用更多的计算资源
++++++++++++++++++

利用更多的计算资源可以分为一下几个方式来进行\:

* 单机CPU训练
* 使用多线程训练。设置命令行参数 :code:`trainer_count`,即可以设置参与训练的线程数量。使用方法为 :code:`paddle train --trainer_count=4`
* 单机GPU训练
* 使用显卡训练。设置命令行参数 :code:`use_gpu`。 使用方法为 :code:`paddle train --use_gpu=true`
* 使用多块显卡训练。设置命令行参数 :code:`use_gpu` 和 :code:`trainer_count`。使用 :code:`--use_gpu=True` 开启GPU训练,使用 :code:`trainer_count` 指定显卡数量。使用方法为 :code:`paddle train --use_gpu=true --trainer_count=4`
* 多机训练
* 使用多机训练的方法也比较简单,需要先在每个节点启动 :code:`paddle pserver`,在使用 :code:`paddle train --pservers=192.168.100.1,192.168.100.2` 来指定每个pserver的ip地址
* 具体的多机训练方法参考 `多机训练 <TBD>`_ 文档。


3. 遇到“非法指令”或者是“illegal instruction”
--------------------------------------------

paddle在进行计算的时候为了提升计算性能,使用了avx指令。部分老的cpu型号无法支持这样的指令。通常来说执行下grep avx /proc/cpuinfo看看是否有输出即可知道是否支持。(另:用此方法部分虚拟机可能检测到支持avx指令但是实际运行会挂掉,请当成是不支持,看下面的解决方案)

解决办法是\:

* 使用 NO_AVX的 `安装包 <../build_and_install/index.html>`_ 或者 `Docker image <../build_and_install/install/docker_install.html>`_
* 或者,使用 :code:`-DWITH_AVX=OFF` 重新编译PaddlePaddle。


4. 如何选择SGD算法的学习率
--------------------------

在采用sgd/async_sgd进行训练时,一个重要的问题是选择正确的learning_rate。如果learning_rate太大,那么训练有可能不收敛,如果learning_rate太小,那么收敛可能很慢,导致训练时间过长。

通常做法是从一个比较大的learning_rate开始试,如果不收敛,那减少学习率10倍继续试验,直到训练收敛为止。那么如何判断训练不收敛呢?可以估计出如果模型采用不变的输出最小的cost0是多少。

如果训练过程的的cost明显高于这个常数输出的cost,那么我们可以判断为训练不收敛。举一个例子,假如我们是三分类问题,采用multi-class-cross-entropy作为cost,数据中0,1,2三类的比例为 :code:`0.2, 0.5, 0.3` , 那么常数输出所能达到的最小cost是 :code:`-(0.2*log(0.2)+0.5*log(0.5)+0.3*log(0.3))=1.03` 。如果训练一个pass(或者更早)后,cost还大于这个数,那么可以认为训练不收敛,应该降低学习率。


5. 如何初始化参数
-----------------

默认情况下,PaddlePaddle使用均值0,标准差为 :math:`\frac{1}{\sqrt{d}}` 来初始化参数。其中 :math:`d` 为参数矩阵的宽度。这种初始化方式在一般情况下不会产生很差的结果。如果用户想要自定义初始化方式,PaddlePaddle目前提供两种参数初始化的方式\:

* 高斯分布。将 :code:`param_attr` 设置成 :code:`param_attr=ParamAttr(initial_mean=0.0, initial_std=1.0)`
* 均匀分布。将 :code:`param_attr` 设置成 :code:`param_attr=ParamAttr(initial_max=1.0, initial_min=-1.0)`

比如设置一个全连接层的参数初始化方式和bias初始化方式,可以使用如下代码。

.. code-block:: python

hidden = fc_layer(input=ipt, param_attr=ParamAttr(initial_max=1.0, initial_min=-1.0),
bias_attr=ParamAttr(initial_mean=1.0, initial_std=0.0))

上述代码将bias全部初始化为1.0, 同时将参数初始化为 :code:`[1.0, -1.0]`的均匀分布。

6. 如何共享参数
---------------

PaddlePaddle的参数使用名字 :code:`name` 作为参数的ID,相同名字的参数,会共享参数。设置参数的名字,可以使用 :code:`ParamAttr(name="YOUR_PARAM_NAME")` 来设置。更方便的设置方式,是想要共享的参数使用同样的 :code:`ParamAttr` 对象。

简单的全连接网络,参数共享的配置示例为\:

.. literalinclude:: ../../python/paddle/trainer_config_helpers/tests/configs/shared_fc.py

这里 :code:`hidden_a` 和 :code:`hidden_b` 使用了同样的parameter和bias。并且softmax层的两个输入也使用了同样的参数 :code:`softmax_param`。


6 changes: 6 additions & 0 deletions doc_cn/faq/reduce_min_pool_size.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
@provider(min_pool_size=0, ...)
def process(settings, filename):
os.system('shuf %s > %s.shuf' % (filename, filename)) # shuffle before.
with open('%s.shuf' % filename, 'r') as f:
for line in f:
yield get_sample_from_line(line)
8 changes: 8 additions & 0 deletions doc_cn/faq/word2vec_config.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
... # the settings and define data provider is omitted.
DICT_DIM=3000 # dictionary dimension.
word_ids=data_layer('word_ids', size=DICT_DIM)

emb = embedding_layer(input=word_ids, size=256, param_attr=ParamAttr(sparse_update=True))
emb_sum = pooling_layer(input=emb, pooling_type=SumPooling())
predict = fc_layer(input=emb_sum, size=DICT_DIM, act=Softmax())
outputs(classification_cost(input=predict, label=data_layer('label', size=DICT_DIM)))
8 changes: 8 additions & 0 deletions doc_cn/faq/word2vec_dataprovider.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
DICT_DIM=3000
@provider(input_types=[integer_sequence(DICT_DIM), integer_value(DICT_DIM)])
def process(settings, filename):
with open(filename) as f:
# yield word ids to predict inner word id
# such as [28, 29, 10, 4], 4
# It means the sentance is 28, 29, 4, 10, 4.
yield read_next_from_file(f)
6 changes: 6 additions & 0 deletions doc_cn/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@ PaddlePaddle文档

使用指南
--------

* `快速入门 <demo/quick_start/index.html>`_
* `编译与安装 <build_and_install/index.html>`_
* `用户接口 <ui/index.html>`_
Expand All @@ -17,3 +18,8 @@ PaddlePaddle文档
算法教程
--------
* `RNN配置 <../doc/algorithm/rnn/rnn.html>`_

常见问题
--------

* `常见问题 <faq/index.html>`_
4 changes: 2 additions & 2 deletions python/paddle/trainer_config_helpers/networks.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
IdentityActivation, TanhActivation, SequenceSoftmaxActivation
from attrs import ExtraAttr
from default_decorators import wrap_name_default, wrap_act_default, \
wrap_param_default
wrap_param_default, wrap_bias_attr_default, wrap_param_attr_default
from layers import * # There are too many layers used in network, so import *
from poolings import MaxPooling, SumPooling
from paddle.trainer.config_parser import *
Expand Down Expand Up @@ -505,7 +505,7 @@ def simple_lstm(input, size, name=None, reverse=False, mat_param_attr=None,
def lstmemory_unit(input, name=None, size=None, param_attr=None,
act=None, gate_act=None, state_act=None,
mixed_bias_attr=None, lstm_bias_attr=None,
mixed_layer_attr=None,lstm_layer_attr=None,
mixed_layer_attr=None, lstm_layer_attr=None,
get_output_layer_attr=None):
"""
Define calculations that a LSTM unit performs in a single time step.
Expand Down
2 changes: 2 additions & 0 deletions python/paddle/trainer_config_helpers/tests/configs/check.md5
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,8 @@
a5d9259ff1fd7ca23d0ef090052cb1f2 last_first_seq.protostr
9c038249ec8ff719753a746cdb04c026 layer_activations.protostr
5913f87b39cee3b2701fa158270aca26 projections.protostr
7334ba0a4544f0623231330fc51d390d shared_fc.protostr
8b8b6bb128a7dfcc937be86145f53e2f shared_lstm.protostr
6b39e34beea8dfb782bee9bd3dea9eb5 simple_rnn_layers.protostr
0fc1409600f1a3301da994ab9d28b0bf test_cost_layers.protostr
144bc6d3a509de74115fa623741797ed test_expand_layer.protostr
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ configs=(test_fc layer_activations projections test_print_layer
test_sequence_pooling test_lstmemory_layer test_grumemory_layer
last_first_seq test_expand_layer test_ntm_layers test_hsigmoid
img_layers util_layers simple_rnn_layers unused_layers test_cost_layers
test_rnn_group)
test_rnn_group shared_fc shared_lstm)


for conf in ${configs[*]}
Expand Down
22 changes: 22 additions & 0 deletions python/paddle/trainer_config_helpers/tests/configs/shared_fc.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
from paddle.trainer_config_helpers import *

settings(
learning_rate=1e-4,
batch_size=1000
)

a = data_layer(name='feature_a', size=200)
b = data_layer(name='feature_b', size=200)

fc_param = ParamAttr(name='fc_param', initial_max=1.0, initial_min=-1.0)
bias_param = ParamAttr(name='bias_param', initial_mean=0.0, initial_std=0.0)

softmax_param = ParamAttr(name='softmax_param', initial_max=1.0, initial_min=-1.0)

hidden_a = fc_layer(input=a, size=200, param_attr=fc_param, bias_attr=bias_param)
hidden_b = fc_layer(input=b, size=200, param_attr=fc_param, bias_attr=bias_param)

predict = fc_layer(input=[hidden_a, hidden_b], param_attr=[softmax_param, softmax_param],
bias_attr=False, size=10, act=SoftmaxActivation())

outputs(classification_cost(input=predict, label=data_layer(name='label', size=10)))
29 changes: 29 additions & 0 deletions python/paddle/trainer_config_helpers/tests/configs/shared_lstm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
from paddle.trainer_config_helpers import *

settings(learning_rate=1e-4, batch_size=1000)

data_1 = data_layer(name='data_a', size=100)
data_2 = data_layer(name='data_b', size=100)

mixed_param = ParamAttr(name='mixed_param')

with mixed_layer(size=400, bias_attr=False) as m1:
m1 += full_matrix_projection(input=data_1, param_attr=mixed_param)

with mixed_layer(size=400, bias_attr=False) as m2:
m2 += full_matrix_projection(input=data_2, param_attr=mixed_param)

lstm_param = ParamAttr(name='lstm_param')
lstm_bias = ParamAttr(name='lstm_bias', initial_mean=0., initial_std=0.)

lstm1 = lstmemory_group(input=m1, param_attr=lstm_param, lstm_bias_attr=lstm_bias, mixed_bias_attr=False)
lstm2 = lstmemory_group(input=m2, param_attr=lstm_param, lstm_bias_attr=lstm_bias, mixed_bias_attr=False)

softmax_param = ParamAttr(name='softmax_param')

predict = fc_layer(input=[last_seq(input=lstm1), last_seq(input=lstm2)],
size=10,
param_attr=[softmax_param, softmax_param],
bias_attr=False,
act=SoftmaxActivation())
outputs(classification_cost(input=predict, label=data_layer(name='label', size=10)))