-
Notifications
You must be signed in to change notification settings - Fork 5.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Browse files
Browse the repository at this point in the history
Co-authored-by: RichardWooSJTU <[email protected]>
- Loading branch information
1 parent
e5dc9d6
commit db368d5
Showing
22 changed files
with
4,168 additions
and
1,428 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,189 @@ | ||
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#pragma once | ||
|
||
#include <iostream> | ||
#include <vector> | ||
#include "paddle/fluid/operators/fused/cublaslt.h" | ||
#include "paddle/fluid/operators/fused/quant_dequant_kernel.h" | ||
#include "paddle/fluid/platform/device/gpu/gpu_info.h" | ||
#include "paddle/fluid/platform/float16.h" | ||
#include "paddle/phi/kernels/funcs/broadcast_function.h" | ||
#include "paddle/phi/kernels/funcs/elementwise_functor.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using Tensor = framework::Tensor; | ||
|
||
template <typename T> | ||
class AttnMatmulINT8 { | ||
public: | ||
AttnMatmulINT8( | ||
const phi::GPUContext& dev_ctx, int m, int n, int k, bool compute_bias) | ||
: dev_ctx_(dev_ctx), m_(m), n_(n), k_(k), compute_bias_(compute_bias) { | ||
auto helper = std::make_shared<CublasLtHelper>(m, k, n); | ||
helpers_.emplace_back(helper); | ||
} | ||
~AttnMatmulINT8() {} | ||
|
||
// This function is used to execute GEMM, with input and output's types are | ||
// both T. | ||
void ComputeForward(const framework::Tensor* weight, | ||
const framework::Tensor* input, | ||
framework::Tensor* input_tmp, | ||
const framework::Tensor* bias, | ||
framework::Tensor* output, | ||
framework::Tensor* output_tmp, | ||
framework::Tensor* bias_out, | ||
const float quant_in_scale, | ||
const framework::Tensor* dequant_out_scale, | ||
const int quant_out_scale_offset, | ||
const int quant_round_type = 1, | ||
const float quant_max_bound = 127.0, | ||
const float quant_min_bound = -127.0) { | ||
quantize_kernel_launcher<T>(input->data<T>(), | ||
input_tmp->data<int8_t>(), | ||
quant_in_scale, | ||
m_, | ||
k_, | ||
quant_round_type, | ||
quant_max_bound, | ||
quant_min_bound, | ||
dev_ctx_.stream()); | ||
|
||
helpers_[0]->GEMM(input_tmp->data<int8_t>(), | ||
weight->data<int8_t>(), | ||
output_tmp->data<int32_t>(), | ||
dev_ctx_.stream()); | ||
|
||
dequantize_kernel_launcher<T>(output_tmp->data<int32_t>(), | ||
output->data<T>(), | ||
m_, | ||
n_, | ||
dev_ctx_.stream(), | ||
quant_in_scale, | ||
dequant_out_scale->data<float>(), | ||
quant_out_scale_offset); | ||
|
||
if (compute_bias_) { | ||
// bias_out = output + bias | ||
std::vector<const framework::Tensor*> ins = {output, bias}; | ||
std::vector<framework::Tensor*> outs = {bias_out}; | ||
phi::funcs::BroadcastKernel<phi::ElementwiseType::kBinary, T, T>( | ||
dev_ctx_, ins, &outs, -1, phi::funcs::AddFunctor<T>()); | ||
PADDLE_ENFORCE_EQ(cudaGetLastError(), | ||
cudaSuccess, | ||
platform::errors::Fatal( | ||
"cuda error occured after computing bias. " | ||
"But it does not mean this error is caused by " | ||
"bias computing")); | ||
} | ||
} | ||
|
||
// This function is used to execute GEMM, with input and output's types are | ||
// both INT8. | ||
void ComputeForwardINT8ToINT8(const framework::Tensor* weight, | ||
framework::Tensor* input, | ||
const framework::Tensor* bias, | ||
framework::Tensor* output, | ||
framework::Tensor* bias_out) { | ||
helpers_[0]->GEMM(input->data<int8_t>(), | ||
weight->data<int8_t>(), | ||
output->data<int32_t>(), | ||
dev_ctx_.stream()); | ||
} | ||
|
||
// This function is used to execute GEMM, with input and output's types are | ||
// INT8 and T. | ||
void ComputeForwardINT8ToT(const framework::Tensor* weight, | ||
const float quant_in_scale, | ||
framework::Tensor* input, | ||
const framework::Tensor* bias, | ||
framework::Tensor* output, | ||
framework::Tensor* output_tmp, | ||
framework::Tensor* bias_out, | ||
const framework::Tensor* dequant_out_scale, | ||
const int quant_out_scale_offset) { | ||
helpers_[0]->GEMM(input->data<int8_t>(), | ||
weight->data<int8_t>(), | ||
output_tmp->data<int32_t>(), | ||
dev_ctx_.stream()); | ||
|
||
dequantize_kernel_launcher<T>(output_tmp->data<int32_t>(), | ||
output->data<T>(), | ||
m_, | ||
n_, | ||
dev_ctx_.stream(), | ||
quant_in_scale, | ||
dequant_out_scale->data<float>(), | ||
quant_out_scale_offset); | ||
|
||
if (compute_bias_) { | ||
// bias_out = output + bias | ||
std::vector<const framework::Tensor*> ins = {output, bias}; | ||
std::vector<framework::Tensor*> outs = {bias_out}; | ||
phi::funcs::BroadcastKernel<phi::ElementwiseType::kBinary, T, T>( | ||
dev_ctx_, ins, &outs, -1, phi::funcs::AddFunctor<T>()); | ||
PADDLE_ENFORCE_EQ(cudaGetLastError(), | ||
cudaSuccess, | ||
platform::errors::Fatal( | ||
"cuda error occured after computing bias. " | ||
"But it does not mean this error is caused by " | ||
"bias computing")); | ||
} | ||
} | ||
|
||
// This function is used to execute GEMM, with input and output's types are T | ||
// and INT8. | ||
void ComputeForwardTToINT8(const framework::Tensor* weight, | ||
const float quant_in_scale, | ||
const framework::Tensor* input, | ||
framework::Tensor* input_tmp, | ||
const framework::Tensor* bias, | ||
framework::Tensor* output, | ||
framework::Tensor* bias_out, | ||
const int quant_round_type = 1, | ||
const float quant_max_bound = 127.0, | ||
const float quant_min_bound = -127.0) { | ||
quantize_kernel_launcher<T>(input->data<T>(), | ||
input_tmp->data<int8_t>(), | ||
quant_in_scale, | ||
m_, | ||
k_, | ||
quant_round_type, | ||
quant_max_bound, | ||
quant_min_bound, | ||
dev_ctx_.stream()); | ||
|
||
helpers_[0]->GEMM(input_tmp->data<int8_t>(), | ||
weight->data<int8_t>(), | ||
output->data<int32_t>(), | ||
dev_ctx_.stream()); | ||
} | ||
|
||
private: | ||
const phi::GPUContext& dev_ctx_; | ||
|
||
int m_; // m | ||
int n_; // n | ||
int k_; // k | ||
|
||
int compute_bias_; | ||
std::vector<std::shared_ptr<CublasLtHelper>> helpers_; | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle |
Oops, something went wrong.