-
Notifications
You must be signed in to change notification settings - Fork 5.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[PHI] traspose2 kernel migration (#47748)
* traspose2 kernel migrated * Got rid of mutable_data * x modification added * ops added in extra info file * Formatting fix * 2 fuse passes with tanpose2 commented * nr of outs changed in 2 passes, passes uncommented * Changes in passes reverted * transpose chnaged in operator.cc * MKLDNN check in operator.cc * Transpose fixes * Fix deleted from operato * template corrected Co-authored-by: Paulina Gacek <[email protected]>
- Loading branch information
1 parent
91dd8a2
commit d86aa4c
Showing
6 changed files
with
226 additions
and
61 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,140 @@ | ||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "paddle/phi/kernels/transpose_kernel.h" | ||
#include "paddle/fluid/framework/tensor_util.h" | ||
#include "paddle/phi/backends/onednn/onednn_reuse.h" | ||
#include "paddle/phi/core/kernel_registry.h" | ||
|
||
namespace phi { | ||
|
||
void SetInMemDescWithSqueeze2FuseSupport( | ||
const std::vector<int> fused_squeeze2_axes, | ||
DenseTensor* in, | ||
const dnnl::memory::desc& in_md) { | ||
const std::set<int64_t> squeeze2_axes_set(fused_squeeze2_axes.begin(), | ||
fused_squeeze2_axes.end()); | ||
const std::vector<int64_t>& x_vec_dims = in_md.dims(); | ||
std::vector<int64_t> squeezed_op_tz( | ||
x_vec_dims.size() - fused_squeeze2_axes.size(), 0); | ||
|
||
int j = 0; | ||
for (size_t i = 0; i < x_vec_dims.size(); ++i) { | ||
if (squeeze2_axes_set.count(i) || | ||
squeeze2_axes_set.count(i - x_vec_dims.size())) { | ||
PADDLE_ENFORCE_EQ( | ||
x_vec_dims[i], | ||
1, | ||
errors::InvalidArgument( | ||
"Squeeze2 input dim %d should be equal to one, but get %d.", | ||
i, | ||
x_vec_dims[i])); | ||
continue; | ||
} | ||
squeezed_op_tz[j++] = x_vec_dims[i]; | ||
} | ||
|
||
in->set_mem_desc(in_md.reshape(squeezed_op_tz)); | ||
in->Resize(make_ddim(squeezed_op_tz)); | ||
} | ||
|
||
void SetInMemDescWithLogicalLayoutFusesSupport( | ||
const OneDNNContext& dev_ctx, | ||
DenseTensor* in, | ||
const dnnl::memory::desc& in_md) { | ||
const auto fused_squeeze2_axes = | ||
dev_ctx.HasDnnAttr("fused_squeeze2_axes") | ||
? PADDLE_GET_CONST(std::vector<int>, | ||
dev_ctx.GetDnnAttr("fused_squeeze2_axes")) | ||
: std::vector<int>(); | ||
if (fused_squeeze2_axes.empty()) { | ||
in->set_mem_desc(in_md); | ||
in->Resize(make_ddim(in_md.dims())); | ||
} else { | ||
SetInMemDescWithSqueeze2FuseSupport(fused_squeeze2_axes, in, in_md); | ||
} | ||
} | ||
|
||
template <typename T, typename Context> | ||
void TransposeKernel(const Context& dev_ctx, | ||
const DenseTensor& x, | ||
const std::vector<int>& axis, | ||
DenseTensor* out) { | ||
PADDLE_ENFORCE_EQ( | ||
dev_ctx.GetPlace().GetType() == AllocationType::CPU, | ||
true, | ||
errors::PreconditionNotMet("oneDNN Transpose kernel must use CPUPlace")); | ||
|
||
SetInMemDescWithLogicalLayoutFusesSupport( | ||
dev_ctx, const_cast<DenseTensor*>(&x), x.mem_desc()); | ||
|
||
if (axis.size() == 1) { | ||
paddle::framework::TensorCopy(x, x.place(), out); | ||
out->set_mem_desc(x.mem_desc()); | ||
return; | ||
} | ||
|
||
auto x_vec_dims = vectorize(x.dims()); | ||
auto x_type = funcs::ToOneDNNDataType(x.dtype()); | ||
funcs::ReorderOneDNNHandler reorder_handler( | ||
x_vec_dims, x.dtype(), x_type, dev_ctx.GetEngine()); | ||
auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory( | ||
x.mem_desc(), funcs::to_void_cast(x.data<T>())); | ||
auto dst_md = | ||
dnnl::memory::desc(x_vec_dims, | ||
x.mem_desc().data_type(), | ||
funcs::GetPlainOneDNNFormat(x_vec_dims.size())); | ||
|
||
// a trick is used here to fake transpose of out_md, so later it will be | ||
// "untransposed", leaving output data in plain format tag | ||
std::vector<int64_t> fake_strides(axis.size()); | ||
auto dims = dst_md.dims(); | ||
int total_stride = 1; | ||
for (int i = static_cast<int>(dims.size()) - 1; i >= 0; --i) { | ||
fake_strides[axis[i]] = total_stride; | ||
total_stride *= dims[axis[i]]; | ||
} | ||
dst_md = | ||
dnnl::memory::desc(x_vec_dims, x.mem_desc().data_type(), fake_strides); | ||
auto dst_data = dev_ctx.template Alloc<T>(out); | ||
auto reorder_dst_memory_p = | ||
std::make_shared<dnnl::memory>(dst_md, dev_ctx.GetEngine(), dst_data); | ||
auto reorder_p = reorder_handler.AcquireReorder(reorder_dst_memory_p, | ||
reorder_src_memory_p); | ||
|
||
auto& astream = OneDNNContext::tls().get_stream(); | ||
reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p); | ||
astream.wait(); | ||
|
||
// it is needed because oneDNN's permute axis understand axes order in | ||
// different way PaddlePaddle's transpose | ||
std::vector<int> permute_axis(axis.size()); | ||
for (size_t i = 0; i < axis.size(); ++i) { | ||
permute_axis[axis[i]] = i; | ||
} | ||
funcs::SetOutMemDescWithLogicalLayoutFusesSupport( | ||
dev_ctx, | ||
out, | ||
reorder_dst_memory_p->get_desc().permute_axes(permute_axis)); | ||
} | ||
} // namespace phi | ||
|
||
PD_REGISTER_KERNEL(transpose, | ||
OneDNN, | ||
ONEDNN, | ||
phi::TransposeKernel, | ||
float, | ||
uint8_t, | ||
int8_t, | ||
phi::dtype::bfloat16) {} |