Skip to content

Commit

Permalink
[API 2.0] add pool2d3d API,test=develop (#26331)
Browse files Browse the repository at this point in the history
* add pool2d3d API,test=develop

* add api unitest,test=develop

* fix unittest, test=develop

* fix reviews, test=develop

* return one element when return indices is true, test=develop

* fix low converage; to_variable to to_tensor, test=develop

* sort API params, test=develop

* fix en doc, merge PR#26108 to here, test=develop

* fix en doc, test=develop
  • Loading branch information
LDOUBLEV authored Aug 24, 2020
1 parent 78ca8cf commit c8e1836
Show file tree
Hide file tree
Showing 8 changed files with 3,010 additions and 37 deletions.
373 changes: 373 additions & 0 deletions python/paddle/fluid/tests/unittests/test_pool1d_api.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,373 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
import paddle
import paddle.nn.functional as F
import paddle.fluid as fluid


def adaptive_start_index(index, input_size, output_size):
return int(np.floor(index * input_size / output_size))


def adaptive_end_index(index, input_size, output_size):
return int(np.ceil((index + 1) * input_size / output_size))


def max_pool1D_forward_naive(x,
ksize,
strides,
paddings,
global_pool=0,
ceil_mode=False,
exclusive=False,
adaptive=False,
data_type=np.float64):
N, C, L = x.shape
if global_pool == 1:
ksize = [L]
if adaptive:
L_out = ksize[0]
else:
L_out = (L - ksize[0] + 2 * paddings[0] + strides[0] - 1
) // strides[0] + 1 if ceil_mode else (
L - ksize[0] + 2 * paddings[0]) // strides[0] + 1

out = np.zeros((N, C, L_out))
for i in range(L_out):
if adaptive:
r_start = adaptive_start_index(i, L, ksize[0])
r_end = adaptive_end_index(i, L, ksize[0])
else:
r_start = np.max((i * strides[0] - paddings[0], 0))
r_end = np.min((i * strides[0] + ksize[0] - paddings[0], L))
x_masked = x[:, :, r_start:r_end]

out[:, :, i] = np.max(x_masked, axis=(2))
return out


def avg_pool1D_forward_naive(x,
ksize,
strides,
paddings,
global_pool=0,
ceil_mode=False,
exclusive=False,
adaptive=False,
data_type=np.float64):
N, C, L = x.shape
if global_pool == 1:
ksize = [L]
if adaptive:
L_out = ksize[0]
else:
L_out = (L - ksize[0] + 2 * paddings[0] + strides[0] - 1
) // strides[0] + 1 if ceil_mode else (
L - ksize[0] + 2 * paddings[0]) // strides[0] + 1

out = np.zeros((N, C, L_out))
for i in range(L_out):
if adaptive:
r_start = adaptive_start_index(i, L, ksize[0])
r_end = adaptive_end_index(i, L, ksize[0])
else:
r_start = np.max((i * strides[0] - paddings[0], 0))
r_end = np.min((i * strides[0] + ksize[0] - paddings[0], L))
x_masked = x[:, :, r_start:r_end]

field_size = (r_end - r_start) \
if (exclusive or adaptive) else (ksize[0])
if data_type == np.int8 or data_type == np.uint8:
out[:, :, i] = (np.rint(
np.sum(x_masked, axis=(2, 3)) / field_size)).astype(data_type)
else:
out[:, :, i] = (np.sum(x_masked, axis=(2)) /
field_size).astype(data_type)
return out


class TestPool1d_API(unittest.TestCase):
def setUp(self):
np.random.seed(123)
self.places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
self.places.append(fluid.CUDAPlace(0))

def check_avg_static_results(self, place):
with fluid.program_guard(fluid.Program(), fluid.Program()):
input = fluid.data(name="input", shape=[2, 3, 32], dtype="float32")
result = F.avg_pool1d(input, kernel_size=2, stride=2, padding=0)

input_np = np.random.random([2, 3, 32]).astype("float32")
result_np = avg_pool1D_forward_naive(
input_np, ksize=[2], strides=[2], paddings=[0], ceil_mode=False)

exe = fluid.Executor(place)
fetches = exe.run(fluid.default_main_program(),
feed={"input": input_np},
fetch_list=[result])
self.assertTrue(np.allclose(fetches[0], result_np))

def check_avg_dygraph_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = F.avg_pool1d(input, kernel_size=2, stride=2, padding=[0])

result_np = avg_pool1D_forward_naive(
input_np, ksize=[2], strides=[2], paddings=[0])

self.assertTrue(np.allclose(result.numpy(), result_np))

avg_pool1d_dg = paddle.nn.layer.AvgPool1d(
kernel_size=2, stride=None, padding=0)
result = avg_pool1d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))

def check_max_static_results(self, place):
with fluid.program_guard(fluid.Program(), fluid.Program()):
input = fluid.data(name="input", shape=[2, 3, 32], dtype="float32")
result = F.max_pool1d(input, kernel_size=2, stride=2, padding=[0])

input_np = np.random.random([2, 3, 32]).astype("float32")
result_np = max_pool1D_forward_naive(
input_np, ksize=[2], strides=[2], paddings=[0])

exe = fluid.Executor(place)
fetches = exe.run(fluid.default_main_program(),
feed={"input": input_np},
fetch_list=[result])
self.assertTrue(np.allclose(fetches[0], result_np))

def check_max_dygraph_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = F.max_pool1d(input, kernel_size=2, stride=2, padding=0)

result_np = max_pool1D_forward_naive(
input_np, ksize=[2], strides=[2], paddings=[0])

self.assertTrue(np.allclose(result.numpy(), result_np))

max_pool1d_dg = paddle.nn.layer.MaxPool1d(
kernel_size=2, stride=None, padding=0)
result = max_pool1d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))

def check_adaptive_max_dygraph_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = F.adaptive_max_pool1d(input, output_size=16)

result_np = max_pool1D_forward_naive(
input_np, ksize=[16], strides=[0], paddings=[0], adaptive=True)
self.assertTrue(np.allclose(result.numpy(), result_np))

ada_max_pool1d_dg = paddle.nn.layer.AdaptiveMaxPool1d(
output_size=16)
result = ada_max_pool1d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))

def check_adaptive_avg_dygraph_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = F.adaptive_avg_pool1d(input, output_size=16)
result_np = avg_pool1D_forward_naive(
input_np, ksize=[16], strides=[0], paddings=[0], adaptive=True)

self.assertTrue(np.allclose(result.numpy(), result_np))

ada_max_pool1d_dg = paddle.nn.layer.AdaptiveAvgPool1d(
output_size=16)
result = ada_max_pool1d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))

def check_adaptive_max_static_results(self, place):
with fluid.program_guard(fluid.Program(), fluid.Program()):
input = fluid.data(name="input", shape=[2, 3, 32], dtype="float32")
result = F.adaptive_max_pool1d(input, output_size=16)

input_np = np.random.random([2, 3, 32]).astype("float32")
result_np = max_pool1D_forward_naive(
input_np, ksize=[16], strides=[2], paddings=[0], adaptive=True)

exe = fluid.Executor(place)
fetches = exe.run(fluid.default_main_program(),
feed={"input": input_np},
fetch_list=[result])
self.assertTrue(np.allclose(fetches[0], result_np))

def check_adaptive_avg_static_results(self, place):
with fluid.program_guard(fluid.Program(), fluid.Program()):
input = fluid.data(name="input", shape=[2, 3, 32], dtype="float32")
result = F.adaptive_avg_pool1d(input, output_size=16)

input_np = np.random.random([2, 3, 32]).astype("float32")
result_np = avg_pool1D_forward_naive(
input_np, ksize=[16], strides=[2], paddings=[0], adaptive=True)

exe = fluid.Executor(place)
fetches = exe.run(fluid.default_main_program(),
feed={"input": input_np},
fetch_list=[result])
self.assertTrue(np.allclose(fetches[0], result_np))

def check_max_dygraph_padding_same(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = F.max_pool1d(
input, kernel_size=2, stride=2, padding="SAME")

result_np = max_pool1D_forward_naive(
input_np, ksize=[2], strides=[2], paddings=[0])

self.assertTrue(np.allclose(result.numpy(), result_np))

def check_avg_dygraph_padding_same(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = F.avg_pool1d(
input, kernel_size=2, stride=2, padding="SAME")

result_np = avg_pool1D_forward_naive(
input_np, ksize=[2], strides=[2], paddings=[0])

self.assertTrue(np.allclose(result.numpy(), result_np))

def test_pool1d(self):
for place in self.places:

self.check_max_dygraph_results(place)
self.check_avg_dygraph_results(place)
self.check_max_static_results(place)
self.check_avg_static_results(place)
self.check_adaptive_max_dygraph_results(place)
self.check_adaptive_avg_dygraph_results(place)
self.check_adaptive_max_static_results(place)
self.check_adaptive_avg_static_results(place)
self.check_max_dygraph_padding_same(place)
self.check_avg_dygraph_padding_same(place)


class TestPool2dError_API(unittest.TestCase):
def test_error_api(self):
def run1():
with fluid.dygraph.guard():
input_np = np.random.uniform(-1, 1,
[2, 3, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
padding = [[2]]
res_pd = F.max_pool1d(
input_pd, kernel_size=2, stride=2, padding=padding)

self.assertRaises(ValueError, run1)

def run2():
with fluid.dygraph.guard():
input_np = np.random.uniform(-1, 1,
[2, 3, 32, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
padding = [[2]]
res_pd = F.max_pool1d(
input_pd, kernel_size=2, stride=2, padding=padding)

self.assertRaises(ValueError, run2)

def run3():
with fluid.dygraph.guard():
input_np = np.random.uniform(-1, 1,
[2, 3, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
padding = "padding"
res_pd = F.max_pool1d(
input_pd, kernel_size=2, stride=2, padding=padding)

self.assertRaises(ValueError, run3)

def run4():
with fluid.dygraph.guard():
input_np = np.random.uniform(-1, 1,
[2, 3, 32, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
padding = "VALID"
res_pd = F.max_pool1d(
input_pd,
kernel_size=2,
stride=2,
padding=padding,
ceil_mode=True)

self.assertRaises(ValueError, run4)

def run5():
with fluid.dygraph.guard():
input_np = np.random.uniform(-1, 1,
[2, 3, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
padding = "VALID"
res_pd = F.max_pool1d(
input_pd,
kernel_size=2,
stride=2,
padding=padding,
ceil_mode=True)

self.assertRaises(ValueError, run5)

def run6():
with fluid.dygraph.guard():
input_np = np.random.uniform(-1, 1,
[2, 3, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
padding = "VALID"
res_pd = F.avg_pool1d(
input_pd,
kernel_size=2,
stride=2,
padding=padding,
ceil_mode=True)

self.assertRaises(ValueError, run6)

def run7():
with fluid.dygraph.guard():
input_np = np.random.uniform(-1, 1,
[2, 3, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
padding = "paddle"
res_pd = F.avg_pool1d(
input_pd,
kernel_size=2,
stride=2,
padding=padding,
ceil_mode=True)

self.assertRaises(ValueError, run7)


if __name__ == '__main__':
unittest.main()
Loading

0 comments on commit c8e1836

Please sign in to comment.