-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[API 2.0] add pool2d3d API,test=develop (#26331)
* add pool2d3d API,test=develop * add api unitest,test=develop * fix unittest, test=develop * fix reviews, test=develop * return one element when return indices is true, test=develop * fix low converage; to_variable to to_tensor, test=develop * sort API params, test=develop * fix en doc, merge PR#26108 to here, test=develop * fix en doc, test=develop
- Loading branch information
Showing
8 changed files
with
3,010 additions
and
37 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,373 @@ | ||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import numpy as np | ||
import unittest | ||
import numpy as np | ||
from op_test import OpTest | ||
import paddle.fluid.core as core | ||
import paddle.fluid as fluid | ||
from paddle.fluid import compiler, Program, program_guard | ||
import paddle | ||
import paddle.nn.functional as F | ||
import paddle.fluid as fluid | ||
|
||
|
||
def adaptive_start_index(index, input_size, output_size): | ||
return int(np.floor(index * input_size / output_size)) | ||
|
||
|
||
def adaptive_end_index(index, input_size, output_size): | ||
return int(np.ceil((index + 1) * input_size / output_size)) | ||
|
||
|
||
def max_pool1D_forward_naive(x, | ||
ksize, | ||
strides, | ||
paddings, | ||
global_pool=0, | ||
ceil_mode=False, | ||
exclusive=False, | ||
adaptive=False, | ||
data_type=np.float64): | ||
N, C, L = x.shape | ||
if global_pool == 1: | ||
ksize = [L] | ||
if adaptive: | ||
L_out = ksize[0] | ||
else: | ||
L_out = (L - ksize[0] + 2 * paddings[0] + strides[0] - 1 | ||
) // strides[0] + 1 if ceil_mode else ( | ||
L - ksize[0] + 2 * paddings[0]) // strides[0] + 1 | ||
|
||
out = np.zeros((N, C, L_out)) | ||
for i in range(L_out): | ||
if adaptive: | ||
r_start = adaptive_start_index(i, L, ksize[0]) | ||
r_end = adaptive_end_index(i, L, ksize[0]) | ||
else: | ||
r_start = np.max((i * strides[0] - paddings[0], 0)) | ||
r_end = np.min((i * strides[0] + ksize[0] - paddings[0], L)) | ||
x_masked = x[:, :, r_start:r_end] | ||
|
||
out[:, :, i] = np.max(x_masked, axis=(2)) | ||
return out | ||
|
||
|
||
def avg_pool1D_forward_naive(x, | ||
ksize, | ||
strides, | ||
paddings, | ||
global_pool=0, | ||
ceil_mode=False, | ||
exclusive=False, | ||
adaptive=False, | ||
data_type=np.float64): | ||
N, C, L = x.shape | ||
if global_pool == 1: | ||
ksize = [L] | ||
if adaptive: | ||
L_out = ksize[0] | ||
else: | ||
L_out = (L - ksize[0] + 2 * paddings[0] + strides[0] - 1 | ||
) // strides[0] + 1 if ceil_mode else ( | ||
L - ksize[0] + 2 * paddings[0]) // strides[0] + 1 | ||
|
||
out = np.zeros((N, C, L_out)) | ||
for i in range(L_out): | ||
if adaptive: | ||
r_start = adaptive_start_index(i, L, ksize[0]) | ||
r_end = adaptive_end_index(i, L, ksize[0]) | ||
else: | ||
r_start = np.max((i * strides[0] - paddings[0], 0)) | ||
r_end = np.min((i * strides[0] + ksize[0] - paddings[0], L)) | ||
x_masked = x[:, :, r_start:r_end] | ||
|
||
field_size = (r_end - r_start) \ | ||
if (exclusive or adaptive) else (ksize[0]) | ||
if data_type == np.int8 or data_type == np.uint8: | ||
out[:, :, i] = (np.rint( | ||
np.sum(x_masked, axis=(2, 3)) / field_size)).astype(data_type) | ||
else: | ||
out[:, :, i] = (np.sum(x_masked, axis=(2)) / | ||
field_size).astype(data_type) | ||
return out | ||
|
||
|
||
class TestPool1d_API(unittest.TestCase): | ||
def setUp(self): | ||
np.random.seed(123) | ||
self.places = [fluid.CPUPlace()] | ||
if core.is_compiled_with_cuda(): | ||
self.places.append(fluid.CUDAPlace(0)) | ||
|
||
def check_avg_static_results(self, place): | ||
with fluid.program_guard(fluid.Program(), fluid.Program()): | ||
input = fluid.data(name="input", shape=[2, 3, 32], dtype="float32") | ||
result = F.avg_pool1d(input, kernel_size=2, stride=2, padding=0) | ||
|
||
input_np = np.random.random([2, 3, 32]).astype("float32") | ||
result_np = avg_pool1D_forward_naive( | ||
input_np, ksize=[2], strides=[2], paddings=[0], ceil_mode=False) | ||
|
||
exe = fluid.Executor(place) | ||
fetches = exe.run(fluid.default_main_program(), | ||
feed={"input": input_np}, | ||
fetch_list=[result]) | ||
self.assertTrue(np.allclose(fetches[0], result_np)) | ||
|
||
def check_avg_dygraph_results(self, place): | ||
with fluid.dygraph.guard(place): | ||
input_np = np.random.random([2, 3, 32]).astype("float32") | ||
input = fluid.dygraph.to_variable(input_np) | ||
result = F.avg_pool1d(input, kernel_size=2, stride=2, padding=[0]) | ||
|
||
result_np = avg_pool1D_forward_naive( | ||
input_np, ksize=[2], strides=[2], paddings=[0]) | ||
|
||
self.assertTrue(np.allclose(result.numpy(), result_np)) | ||
|
||
avg_pool1d_dg = paddle.nn.layer.AvgPool1d( | ||
kernel_size=2, stride=None, padding=0) | ||
result = avg_pool1d_dg(input) | ||
self.assertTrue(np.allclose(result.numpy(), result_np)) | ||
|
||
def check_max_static_results(self, place): | ||
with fluid.program_guard(fluid.Program(), fluid.Program()): | ||
input = fluid.data(name="input", shape=[2, 3, 32], dtype="float32") | ||
result = F.max_pool1d(input, kernel_size=2, stride=2, padding=[0]) | ||
|
||
input_np = np.random.random([2, 3, 32]).astype("float32") | ||
result_np = max_pool1D_forward_naive( | ||
input_np, ksize=[2], strides=[2], paddings=[0]) | ||
|
||
exe = fluid.Executor(place) | ||
fetches = exe.run(fluid.default_main_program(), | ||
feed={"input": input_np}, | ||
fetch_list=[result]) | ||
self.assertTrue(np.allclose(fetches[0], result_np)) | ||
|
||
def check_max_dygraph_results(self, place): | ||
with fluid.dygraph.guard(place): | ||
input_np = np.random.random([2, 3, 32]).astype("float32") | ||
input = fluid.dygraph.to_variable(input_np) | ||
result = F.max_pool1d(input, kernel_size=2, stride=2, padding=0) | ||
|
||
result_np = max_pool1D_forward_naive( | ||
input_np, ksize=[2], strides=[2], paddings=[0]) | ||
|
||
self.assertTrue(np.allclose(result.numpy(), result_np)) | ||
|
||
max_pool1d_dg = paddle.nn.layer.MaxPool1d( | ||
kernel_size=2, stride=None, padding=0) | ||
result = max_pool1d_dg(input) | ||
self.assertTrue(np.allclose(result.numpy(), result_np)) | ||
|
||
def check_adaptive_max_dygraph_results(self, place): | ||
with fluid.dygraph.guard(place): | ||
input_np = np.random.random([2, 3, 32]).astype("float32") | ||
input = fluid.dygraph.to_variable(input_np) | ||
result = F.adaptive_max_pool1d(input, output_size=16) | ||
|
||
result_np = max_pool1D_forward_naive( | ||
input_np, ksize=[16], strides=[0], paddings=[0], adaptive=True) | ||
self.assertTrue(np.allclose(result.numpy(), result_np)) | ||
|
||
ada_max_pool1d_dg = paddle.nn.layer.AdaptiveMaxPool1d( | ||
output_size=16) | ||
result = ada_max_pool1d_dg(input) | ||
self.assertTrue(np.allclose(result.numpy(), result_np)) | ||
|
||
def check_adaptive_avg_dygraph_results(self, place): | ||
with fluid.dygraph.guard(place): | ||
input_np = np.random.random([2, 3, 32]).astype("float32") | ||
input = fluid.dygraph.to_variable(input_np) | ||
result = F.adaptive_avg_pool1d(input, output_size=16) | ||
result_np = avg_pool1D_forward_naive( | ||
input_np, ksize=[16], strides=[0], paddings=[0], adaptive=True) | ||
|
||
self.assertTrue(np.allclose(result.numpy(), result_np)) | ||
|
||
ada_max_pool1d_dg = paddle.nn.layer.AdaptiveAvgPool1d( | ||
output_size=16) | ||
result = ada_max_pool1d_dg(input) | ||
self.assertTrue(np.allclose(result.numpy(), result_np)) | ||
|
||
def check_adaptive_max_static_results(self, place): | ||
with fluid.program_guard(fluid.Program(), fluid.Program()): | ||
input = fluid.data(name="input", shape=[2, 3, 32], dtype="float32") | ||
result = F.adaptive_max_pool1d(input, output_size=16) | ||
|
||
input_np = np.random.random([2, 3, 32]).astype("float32") | ||
result_np = max_pool1D_forward_naive( | ||
input_np, ksize=[16], strides=[2], paddings=[0], adaptive=True) | ||
|
||
exe = fluid.Executor(place) | ||
fetches = exe.run(fluid.default_main_program(), | ||
feed={"input": input_np}, | ||
fetch_list=[result]) | ||
self.assertTrue(np.allclose(fetches[0], result_np)) | ||
|
||
def check_adaptive_avg_static_results(self, place): | ||
with fluid.program_guard(fluid.Program(), fluid.Program()): | ||
input = fluid.data(name="input", shape=[2, 3, 32], dtype="float32") | ||
result = F.adaptive_avg_pool1d(input, output_size=16) | ||
|
||
input_np = np.random.random([2, 3, 32]).astype("float32") | ||
result_np = avg_pool1D_forward_naive( | ||
input_np, ksize=[16], strides=[2], paddings=[0], adaptive=True) | ||
|
||
exe = fluid.Executor(place) | ||
fetches = exe.run(fluid.default_main_program(), | ||
feed={"input": input_np}, | ||
fetch_list=[result]) | ||
self.assertTrue(np.allclose(fetches[0], result_np)) | ||
|
||
def check_max_dygraph_padding_same(self, place): | ||
with fluid.dygraph.guard(place): | ||
input_np = np.random.random([2, 3, 32]).astype("float32") | ||
input = fluid.dygraph.to_variable(input_np) | ||
result = F.max_pool1d( | ||
input, kernel_size=2, stride=2, padding="SAME") | ||
|
||
result_np = max_pool1D_forward_naive( | ||
input_np, ksize=[2], strides=[2], paddings=[0]) | ||
|
||
self.assertTrue(np.allclose(result.numpy(), result_np)) | ||
|
||
def check_avg_dygraph_padding_same(self, place): | ||
with fluid.dygraph.guard(place): | ||
input_np = np.random.random([2, 3, 32]).astype("float32") | ||
input = fluid.dygraph.to_variable(input_np) | ||
result = F.avg_pool1d( | ||
input, kernel_size=2, stride=2, padding="SAME") | ||
|
||
result_np = avg_pool1D_forward_naive( | ||
input_np, ksize=[2], strides=[2], paddings=[0]) | ||
|
||
self.assertTrue(np.allclose(result.numpy(), result_np)) | ||
|
||
def test_pool1d(self): | ||
for place in self.places: | ||
|
||
self.check_max_dygraph_results(place) | ||
self.check_avg_dygraph_results(place) | ||
self.check_max_static_results(place) | ||
self.check_avg_static_results(place) | ||
self.check_adaptive_max_dygraph_results(place) | ||
self.check_adaptive_avg_dygraph_results(place) | ||
self.check_adaptive_max_static_results(place) | ||
self.check_adaptive_avg_static_results(place) | ||
self.check_max_dygraph_padding_same(place) | ||
self.check_avg_dygraph_padding_same(place) | ||
|
||
|
||
class TestPool2dError_API(unittest.TestCase): | ||
def test_error_api(self): | ||
def run1(): | ||
with fluid.dygraph.guard(): | ||
input_np = np.random.uniform(-1, 1, | ||
[2, 3, 32]).astype(np.float32) | ||
input_pd = fluid.dygraph.to_variable(input_np) | ||
padding = [[2]] | ||
res_pd = F.max_pool1d( | ||
input_pd, kernel_size=2, stride=2, padding=padding) | ||
|
||
self.assertRaises(ValueError, run1) | ||
|
||
def run2(): | ||
with fluid.dygraph.guard(): | ||
input_np = np.random.uniform(-1, 1, | ||
[2, 3, 32, 32]).astype(np.float32) | ||
input_pd = fluid.dygraph.to_variable(input_np) | ||
padding = [[2]] | ||
res_pd = F.max_pool1d( | ||
input_pd, kernel_size=2, stride=2, padding=padding) | ||
|
||
self.assertRaises(ValueError, run2) | ||
|
||
def run3(): | ||
with fluid.dygraph.guard(): | ||
input_np = np.random.uniform(-1, 1, | ||
[2, 3, 32]).astype(np.float32) | ||
input_pd = fluid.dygraph.to_variable(input_np) | ||
padding = "padding" | ||
res_pd = F.max_pool1d( | ||
input_pd, kernel_size=2, stride=2, padding=padding) | ||
|
||
self.assertRaises(ValueError, run3) | ||
|
||
def run4(): | ||
with fluid.dygraph.guard(): | ||
input_np = np.random.uniform(-1, 1, | ||
[2, 3, 32, 32]).astype(np.float32) | ||
input_pd = fluid.dygraph.to_variable(input_np) | ||
padding = "VALID" | ||
res_pd = F.max_pool1d( | ||
input_pd, | ||
kernel_size=2, | ||
stride=2, | ||
padding=padding, | ||
ceil_mode=True) | ||
|
||
self.assertRaises(ValueError, run4) | ||
|
||
def run5(): | ||
with fluid.dygraph.guard(): | ||
input_np = np.random.uniform(-1, 1, | ||
[2, 3, 32]).astype(np.float32) | ||
input_pd = fluid.dygraph.to_variable(input_np) | ||
padding = "VALID" | ||
res_pd = F.max_pool1d( | ||
input_pd, | ||
kernel_size=2, | ||
stride=2, | ||
padding=padding, | ||
ceil_mode=True) | ||
|
||
self.assertRaises(ValueError, run5) | ||
|
||
def run6(): | ||
with fluid.dygraph.guard(): | ||
input_np = np.random.uniform(-1, 1, | ||
[2, 3, 32]).astype(np.float32) | ||
input_pd = fluid.dygraph.to_variable(input_np) | ||
padding = "VALID" | ||
res_pd = F.avg_pool1d( | ||
input_pd, | ||
kernel_size=2, | ||
stride=2, | ||
padding=padding, | ||
ceil_mode=True) | ||
|
||
self.assertRaises(ValueError, run6) | ||
|
||
def run7(): | ||
with fluid.dygraph.guard(): | ||
input_np = np.random.uniform(-1, 1, | ||
[2, 3, 32]).astype(np.float32) | ||
input_pd = fluid.dygraph.to_variable(input_np) | ||
padding = "paddle" | ||
res_pd = F.avg_pool1d( | ||
input_pd, | ||
kernel_size=2, | ||
stride=2, | ||
padding=padding, | ||
ceil_mode=True) | ||
|
||
self.assertRaises(ValueError, run7) | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |
Oops, something went wrong.