-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Add slice op. * Remove using from header file and fix doc. * Fix doc * Small fix.
- Loading branch information
1 parent
1d19849
commit adc0908
Showing
5 changed files
with
303 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,130 @@ | ||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/fluid/operators/slice_op.h" | ||
#include <algorithm> | ||
#include <vector> | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using Tensor = framework::Tensor; | ||
|
||
class SliceOp : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
void InferShape(framework::InferShapeContext *ctx) const override { | ||
PADDLE_ENFORCE(ctx->HasInput("Input"), | ||
"Input (Input) of slice op should not be null."); | ||
PADDLE_ENFORCE(ctx->HasOutput("Out"), | ||
"Output (Out) of slice op should not be null."); | ||
|
||
auto in_dims = ctx->GetInputDim("Input"); | ||
PADDLE_ENFORCE(in_dims.size() < 7, | ||
"The rank of input should be less than 7."); | ||
framework::DDim out_dims(in_dims); | ||
auto axes = ctx->Attrs().Get<std::vector<int>>("axes"); | ||
auto starts = ctx->Attrs().Get<std::vector<int>>("starts"); | ||
auto ends = ctx->Attrs().Get<std::vector<int>>("ends"); | ||
|
||
PADDLE_ENFORCE_EQ(starts.size(), ends.size()); | ||
PADDLE_ENFORCE_EQ(starts.size(), axes.size()); | ||
int dim_value, start, end; | ||
for (size_t i = 0; i < axes.size(); ++i) { | ||
dim_value = out_dims[axes[i]]; | ||
start = starts[i] < 0 ? (starts[i] + dim_value) : starts[i]; | ||
end = ends[i] < 0 ? (ends[i] + dim_value) : ends[i]; | ||
start = std::max(start, 0); | ||
end = std::max(end, 0); | ||
start = std::min(start, dim_value); | ||
end = std::min(end, dim_value); | ||
start = std::min(start, end); | ||
out_dims[axes[i]] = end - start; | ||
} | ||
ctx->SetOutputDim("Out", out_dims); | ||
} | ||
|
||
protected: | ||
framework::OpKernelType GetExpectedKernelType( | ||
const framework::ExecutionContext &ctx) const override { | ||
return framework::OpKernelType( | ||
framework::ToDataType(ctx.Input<Tensor>("Input")->type()), | ||
ctx.GetPlace()); | ||
} | ||
}; | ||
|
||
class SliceOpMaker : public framework::OpProtoAndCheckerMaker { | ||
public: | ||
void Make() override { | ||
AddInput("Input", "Tensor of data to extract slices from."); | ||
AddOutput("Out", "Sliced data tensor."); | ||
|
||
AddAttr<std::vector<int>>( | ||
"axes", | ||
"(list<int>) Axes that `starts` and `ends` apply to. It's optional." | ||
"If not present, will be treated as [0, 1, ..., len(`starts`) - 1]."); | ||
AddAttr<std::vector<int>>( | ||
"starts", | ||
"(list<int>) Starting indices of corresponding axis in `axes`"); | ||
AddAttr<std::vector<int>>( | ||
"ends", | ||
"(list<int>) Starting indices of corresponding axis in `axes`."); | ||
|
||
AddComment(R"DOC( | ||
Slice Operator. | ||
Produces a slice of the input tensor along multiple axes. Similar to numpy: | ||
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html | ||
Slice uses `axes`, `starts` and `ends` attributes to specify the start and | ||
end dimension for each axis in the list of axes, it uses this information | ||
to slice the input data tensor. If a negative value is passed for any of | ||
the start or end indices, it represents number of elements before the end | ||
of that dimension. If the value passed to start or end is larger than | ||
the n (the number of elements in this dimension), it represents n. | ||
For slicing to the end of a dimension with unknown size, it is recommended | ||
to pass in INT_MAX. If axes are omitted, they are set to [0, ..., ndim-1]. | ||
Example 1: | ||
Given: | ||
data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] | ||
axes = [0, 1] | ||
starts = [1, 0] | ||
ends = [2, 3] | ||
Then: | ||
result = [ [5, 6, 7], ] | ||
Example 2: | ||
Given: | ||
data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] | ||
starts = [0, 1] | ||
ends = [-1, 1000] | ||
Then: | ||
result = [ [2, 3, 4], ] | ||
)DOC"); | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OPERATOR(slice, ops::SliceOp, ops::SliceOpMaker, | ||
paddle::framework::EmptyGradOpMaker); | ||
|
||
REGISTER_OP_CPU_KERNEL( | ||
slice, ops::SliceKernel<paddle::platform::CPUDeviceContext, int>, | ||
ops::SliceKernel<paddle::platform::CPUDeviceContext, int64_t>, | ||
ops::SliceKernel<paddle::platform::CPUDeviceContext, float>, | ||
ops::SliceKernel<paddle::platform::CPUDeviceContext, double>); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/fluid/operators/slice_op.h" | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OP_CUDA_KERNEL( | ||
slice, ops::SliceKernel<paddle::platform::CUDADeviceContext, float>, | ||
ops::SliceKernel<paddle::platform::CUDADeviceContext, double>, | ||
ops::SliceKernel<paddle::platform::CUDADeviceContext, int>, | ||
ops::SliceKernel<paddle::platform::CUDADeviceContext, int64_t>); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#pragma once | ||
#include <algorithm> | ||
#include <vector> | ||
#include "paddle/fluid/framework/op_registry.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
template <typename DeviceContext, typename T> | ||
class SliceKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
int rank = ctx.Input<framework::Tensor>("Input")->dims().size(); | ||
switch (rank) { | ||
case 1: | ||
SliceCompute<1>(ctx); | ||
break; | ||
case 2: | ||
SliceCompute<2>(ctx); | ||
break; | ||
case 3: | ||
SliceCompute<3>(ctx); | ||
break; | ||
case 4: | ||
SliceCompute<4>(ctx); | ||
break; | ||
case 5: | ||
SliceCompute<5>(ctx); | ||
break; | ||
case 6: | ||
SliceCompute<6>(ctx); | ||
break; | ||
} | ||
} | ||
|
||
private: | ||
template <size_t D> | ||
void SliceCompute(const framework::ExecutionContext& context) const { | ||
auto& place = | ||
*context.template device_context<DeviceContext>().eigen_device(); | ||
auto in = context.Input<framework::Tensor>("Input"); | ||
auto out = context.Output<framework::Tensor>("Out"); | ||
out->mutable_data<T>(context.GetPlace()); | ||
auto out_dims = out->dims(); | ||
auto in_dims = in->dims(); | ||
auto axes = context.Attr<std::vector<int>>("axes"); | ||
auto starts = context.Attr<std::vector<int>>("starts"); | ||
|
||
auto offsets = Eigen::array<int, D>(); | ||
auto extents = Eigen::array<int, D>(); | ||
for (size_t i = 0; i < D; ++i) { | ||
offsets[i] = 0; | ||
extents[i] = out_dims[i]; | ||
} | ||
int start; | ||
for (size_t i = 0; i < axes.size(); ++i) { | ||
start = starts[i]; | ||
if (start < 0) { | ||
start = (start + in_dims[axes[i]]); | ||
} | ||
start = std::max(start, 0); | ||
offsets[axes[i]] = start; | ||
} | ||
auto in_t = | ||
framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From( | ||
*in); | ||
auto out_t = | ||
framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From( | ||
*out); | ||
out_t.device(place) = in_t.slice(offsets, extents); | ||
} | ||
}; | ||
} // namespace operators | ||
} // namespace paddle |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -71,6 +71,7 @@ | |
'cumsum', | ||
'scatter', | ||
'sum', | ||
'slice', | ||
'polygon_box_transform', | ||
'shape', | ||
'maxout', | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import unittest | ||
import numpy as np | ||
from op_test import OpTest | ||
|
||
|
||
class TestSliceOp(OpTest): | ||
def setUp(self): | ||
self.op_type = "slice" | ||
self.config() | ||
self.inputs = {'Input': self.input} | ||
self.outputs = {'Out': self.out} | ||
self.attrs = { | ||
'axes': self.axes, | ||
'starts': self.starts, | ||
'ends': self.ends | ||
} | ||
|
||
def config(self): | ||
self.input = np.random.random([3, 4, 5, 6]).astype("float32") | ||
self.starts = [1, 0, 2] | ||
self.ends = [3, 3, 4] | ||
self.axes = [0, 1, 2] | ||
self.out = self.input[1:3, 0:3, 2:4, :] | ||
|
||
def test_check_output(self): | ||
self.check_output() | ||
|
||
|
||
class TestCase1(TestSliceOp): | ||
def config(self): | ||
self.input = np.random.random([3, 4, 5, 6]).astype("float32") | ||
self.starts = [-3, 0, 2] | ||
self.ends = [3, 100, -1] | ||
self.axes = [0, 1, 2] | ||
self.out = self.input[-3:3, 0:100, 2:-1, :] | ||
|
||
|
||
class TestCase2(TestSliceOp): | ||
def config(self): | ||
self.input = np.random.random([3, 4, 5, 6]).astype("float32") | ||
self.starts = [-3, 0, 2] | ||
self.ends = [3, 100, -1] | ||
self.axes = [0, 1, 3] | ||
self.out = self.input[-3:3, 0:100, :, 2:-1] | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |