-
Notifications
You must be signed in to change notification settings - Fork 5.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #16529 from lidanqing-intel/lidanqing/preprocess-data
preprocess with PIL the full val dataset and save binary
- Loading branch information
Showing
1 changed file
with
162 additions
and
0 deletions.
There are no files selected for viewing
162 changes: 162 additions & 0 deletions
162
paddle/fluid/inference/tests/api/full_ILSVRC2012_val_preprocess.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,162 @@ | ||
# copyright (c) 2019 paddlepaddle authors. all rights reserved. | ||
# | ||
# licensed under the apache license, version 2.0 (the "license"); | ||
# you may not use this file except in compliance with the license. | ||
# you may obtain a copy of the license at | ||
# | ||
# http://www.apache.org/licenses/license-2.0 | ||
# | ||
# unless required by applicable law or agreed to in writing, software | ||
# distributed under the license is distributed on an "as is" basis, | ||
# without warranties or conditions of any kind, either express or implied. | ||
# see the license for the specific language governing permissions and | ||
# limitations under the license. | ||
import unittest | ||
import os | ||
import numpy as np | ||
import time | ||
import sys | ||
import random | ||
import functools | ||
import contextlib | ||
from PIL import Image, ImageEnhance | ||
import math | ||
from paddle.dataset.common import download | ||
|
||
random.seed(0) | ||
np.random.seed(0) | ||
|
||
DATA_DIM = 224 | ||
|
||
SIZE_FLOAT32 = 4 | ||
SIZE_INT64 = 8 | ||
|
||
img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) | ||
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) | ||
|
||
|
||
def resize_short(img, target_size): | ||
percent = float(target_size) / min(img.size[0], img.size[1]) | ||
resized_width = int(round(img.size[0] * percent)) | ||
resized_height = int(round(img.size[1] * percent)) | ||
img = img.resize((resized_width, resized_height), Image.LANCZOS) | ||
return img | ||
|
||
|
||
def crop_image(img, target_size, center): | ||
width, height = img.size | ||
size = target_size | ||
if center == True: | ||
w_start = (width - size) / 2 | ||
h_start = (height - size) / 2 | ||
else: | ||
w_start = np.random.randint(0, width - size + 1) | ||
h_start = np.random.randint(0, height - size + 1) | ||
w_end = w_start + size | ||
h_end = h_start + size | ||
img = img.crop((w_start, h_start, w_end, h_end)) | ||
return img | ||
|
||
|
||
def process_image(img_path, mode, color_jitter, rotate): | ||
img = Image.open(img_path) | ||
img = resize_short(img, target_size=256) | ||
img = crop_image(img, target_size=DATA_DIM, center=True) | ||
if img.mode != 'RGB': | ||
img = img.convert('RGB') | ||
img = np.array(img).astype('float32').transpose((2, 0, 1)) / 255 | ||
img -= img_mean | ||
img /= img_std | ||
return img | ||
|
||
|
||
def download_unzip(): | ||
int8_download = 'int8/download' | ||
|
||
target_name = 'data' | ||
|
||
cache_folder = os.path.expanduser('~/.cache/paddle/dataset/' + | ||
int8_download) | ||
|
||
target_folder = os.path.join(cache_folder, target_name) | ||
|
||
data_urls = [] | ||
data_md5s = [] | ||
|
||
data_urls.append( | ||
'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partaa' | ||
) | ||
data_md5s.append('60f6525b0e1d127f345641d75d41f0a8') | ||
data_urls.append( | ||
'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partab' | ||
) | ||
data_md5s.append('1e9f15f64e015e58d6f9ec3210ed18b5') | ||
|
||
file_names = [] | ||
|
||
for i in range(0, len(data_urls)): | ||
download(data_urls[i], cache_folder, data_md5s[i]) | ||
file_names.append(data_urls[i].split('/')[-1]) | ||
|
||
zip_path = os.path.join(cache_folder, 'full_imagenet_val.tar.gz') | ||
|
||
if not os.path.exists(zip_path): | ||
cat_command = 'cat' | ||
for file_name in file_names: | ||
cat_command += ' ' + os.path.join(cache_folder, file_name) | ||
cat_command += ' > ' + zip_path | ||
os.system(cat_command) | ||
print('Data is downloaded at {0}\n').format(zip_path) | ||
|
||
if not os.path.exists(target_folder): | ||
cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(target_folder, zip_path) | ||
os.system(cmd) | ||
print('Data is unzipped at {0}\n'.format(target_folder)) | ||
|
||
data_dir = os.path.join(target_folder, 'ILSVRC2012') | ||
print('ILSVRC2012 full val set at {0}\n'.format(data_dir)) | ||
return data_dir | ||
|
||
|
||
def reader(): | ||
data_dir = download_unzip() | ||
file_list = os.path.join(data_dir, 'val_list.txt') | ||
output_file = os.path.join(data_dir, 'int8_full_val.bin') | ||
with open(file_list) as flist: | ||
lines = [line.strip() for line in flist] | ||
num_images = len(lines) | ||
if not os.path.exists(output_file): | ||
print( | ||
'Preprocessing to binary file...<num_images><all images><all labels>...\n' | ||
) | ||
with open(output_file, "w+b") as of: | ||
#save num_images(int64_t) to file | ||
of.seek(0) | ||
num = np.array(int(num_images)).astype('int64') | ||
of.write(num.tobytes()) | ||
for idx, line in enumerate(lines): | ||
img_path, label = line.split() | ||
img_path = os.path.join(data_dir, img_path) | ||
if not os.path.exists(img_path): | ||
continue | ||
|
||
#save image(float32) to file | ||
img = process_image( | ||
img_path, 'val', color_jitter=False, rotate=False) | ||
np_img = np.array(img) | ||
of.seek(SIZE_INT64 + SIZE_FLOAT32 * DATA_DIM * DATA_DIM * 3 | ||
* idx) | ||
of.write(np_img.astype('float32').tobytes()) | ||
|
||
#save label(int64_t) to file | ||
label_int = (int)(label) | ||
np_label = np.array(label_int) | ||
of.seek(SIZE_INT64 + SIZE_FLOAT32 * DATA_DIM * DATA_DIM * 3 | ||
* num_images + idx * SIZE_INT64) | ||
of.write(np_label.astype('int64').tobytes()) | ||
|
||
print('The preprocessed binary file path {}\n'.format(output_file)) | ||
|
||
|
||
if __name__ == '__main__': | ||
reader() |