Skip to content

Commit

Permalink
[Paddle-TRT] Shape sum fix scale (#44394)
Browse files Browse the repository at this point in the history
* shape sum

* add shape, sum trt layer
  • Loading branch information
zhoutianzi666 authored Jul 19, 2022
1 parent d5f0ed4 commit 6fb2958
Show file tree
Hide file tree
Showing 7 changed files with 532 additions and 0 deletions.
2 changes: 2 additions & 0 deletions paddle/fluid/inference/api/analysis_predictor.cc
Original file line number Diff line number Diff line change
Expand Up @@ -2080,6 +2080,8 @@ USE_TRT_CONVERTER(top_k)
USE_TRT_CONVERTER(top_k_v2)
USE_TRT_CONVERTER(squeeze2)
USE_TRT_CONVERTER(unsqueeze2)
USE_TRT_CONVERTER(sum)
USE_TRT_CONVERTER(shape)
USE_TRT_CONVERTER(fill_constant)
USE_TRT_CONVERTER(fused_token_prune)
#if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000)
Expand Down
2 changes: 2 additions & 0 deletions paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -69,6 +69,8 @@ list(
top_k_op.cc
squeeze2_op.cc
unsqueeze2_op.cc
sum_op.cc
shape_op.cc
fill_constant_op.cc
fused_token_prune_op.cc)

Expand Down
41 changes: 41 additions & 0 deletions paddle/fluid/inference/tensorrt/convert/shape_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace inference {
namespace tensorrt {

class ShapeOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope,
bool test_mode) override {
VLOG(4) << "convert a fluid shape op to tensorrt shape layer";

framework::OpDesc op_desc(op, nullptr);
// Declare inputs
auto* input = engine_->GetITensor(op_desc.Input("Input")[0]);
nvinfer1::ILayer* layer = TRT_ENGINE_ADD_LAYER(engine_, Shape, *input);
auto output_name = op_desc.Output("Out")[0];
RreplenishLayerAndOutput(layer, "shape", {output_name}, test_mode);
}
};

} // namespace tensorrt
} // namespace inference
} // namespace paddle

REGISTER_TRT_OP_CONVERTER(shape, ShapeOpConverter);
54 changes: 54 additions & 0 deletions paddle/fluid/inference/tensorrt/convert/sum_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace inference {
namespace tensorrt {

class SumOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope,
bool test_mode) override {
VLOG(4) << "convert a fluid sum op to tensorrt sum layer";

framework::OpDesc op_desc(op, nullptr);
nvinfer1::ILayer* layer = nullptr;
// Declare the first input
auto* sum_tmp = engine_->GetITensor(op_desc.Input("X")[0]);
if (op_desc.Input("X").size() == 1) {
layer = TRT_ENGINE_ADD_LAYER(engine_, Identity, *sum_tmp);
} else {
for (size_t i = 1; i < op_desc.Input("X").size(); i++) {
auto* input_i = engine_->GetITensor(op_desc.Input("X")[i]);
layer = TRT_ENGINE_ADD_LAYER(engine_,
ElementWise,
*input_i,
*sum_tmp,
nvinfer1::ElementWiseOperation::kSUM);
sum_tmp = layer->getOutput(0);
}
}
auto output_name = op_desc.Output("Out")[0];
RreplenishLayerAndOutput(layer, "sum", {output_name}, test_mode);
}
};

} // namespace tensorrt
} // namespace inference
} // namespace paddle

REGISTER_TRT_OP_CONVERTER(sum, SumOpConverter);
17 changes: 17 additions & 0 deletions paddle/fluid/inference/tensorrt/op_teller.cc
Original file line number Diff line number Diff line change
Expand Up @@ -170,6 +170,8 @@ struct SimpleOpTypeSetTeller : public Teller {
"recover_padding",
"remove_padding",
"fill_constant",
"sum",
"shape",
"squeeze2",
"unsqueeze2"};
std::unordered_set<std::string> teller_set{
Expand Down Expand Up @@ -276,6 +278,8 @@ struct SimpleOpTypeSetTeller : public Teller {
"recover_padding",
"remove_padding",
"fill_constant",
"sum",
"shape",
"squeeze2",
"unsqueeze2",
"fused_token_prune"};
Expand Down Expand Up @@ -1208,6 +1212,11 @@ bool OpTeller::Tell(const framework::ir::Node* node,
auto x_var_name = desc.Input("X")[0];
auto* x_var_desc = block->FindVar(x_var_name);
const auto x_shape = x_var_desc->GetShape();
auto dtype = x_var_desc->GetDataType();
// At present, only support float32 or float16 into trt.
if (!(dtype == 5 || dtype == 4)) {
return false;
}
if (!with_dynamic_shape && x_shape.size() == 1) {
VLOG(3) << "Scale op does not support 1-dimensional input in tensorrt";
return false;
Expand Down Expand Up @@ -1361,6 +1370,14 @@ bool OpTeller::Tell(const framework::ir::Node* node,
return false;
}
}
// remember that 1D input in static shape mode is filtered at the beginning
if (op_type == "sum") {
return true;
}

if (op_type == "shape" && !with_dynamic_shape) {
return false;
}

if (op_type == "fused_embedding_eltwise_layernorm") {
if (!with_dynamic_shape) {
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import unittest


class TrtConvertSumTest(TrtLayerAutoScanTest):

def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True

def sample_program_configs(self):

def generate_input1(batch):
if self.dims == 4:
return np.ones([batch, 3, 24, 24]).astype(np.float32)
elif self.dims == 3:
return np.ones([batch, 3, 24]).astype(np.float32)
elif self.dims == 2:
return np.ones([batch, 24]).astype(np.float32)
elif self.dims == 1:
return np.ones([24]).astype(np.float32)

for dims in [1, 2, 3, 4]:
for batch in [1, 4]:
self.dims = dims
ops_config = [{
"op_type": "shape",
"op_inputs": {
"Input": ["input1"]
},
"op_outputs": {
"Out": ["output"]
},
"op_attrs": {}
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input1":
TensorConfig(data_gen=partial(generate_input1, batch))
},
outputs=["output"])

yield program_config

def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):

def generate_dynamic_shape():
if self.dims == 4:
self.dynamic_shape.min_input_shape = {"input1": [1, 3, 24, 24]}
self.dynamic_shape.max_input_shape = {"input1": [4, 3, 48, 48]}
self.dynamic_shape.opt_input_shape = {"input1": [1, 3, 24, 24]}
elif self.dims == 3:
self.dynamic_shape.min_input_shape = {"input1": [1, 3, 24]}
self.dynamic_shape.max_input_shape = {"input1": [4, 3, 48]}
self.dynamic_shape.opt_input_shape = {"input1": [1, 3, 24]}
elif self.dims == 2:
self.dynamic_shape.min_input_shape = {"input1": [1, 24]}
self.dynamic_shape.max_input_shape = {"input1": [4, 48]}
self.dynamic_shape.opt_input_shape = {"input1": [1, 24]}
elif self.dims == 1:
self.dynamic_shape.min_input_shape = {"input1": [24]}
self.dynamic_shape.max_input_shape = {"input1": [48]}
self.dynamic_shape.opt_input_shape = {
"input1": [24],
}

def generate_trt_nodes_num(dynamic_shape):
if (not dynamic_shape):
return 0, 3
return 1, 2

def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}

# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
False), 1e-5

# for dynamic_shape
generate_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(True), 1e-5

def test(self):
self.run_test()


if __name__ == "__main__":
unittest.main()
Loading

0 comments on commit 6fb2958

Please sign in to comment.