-
Notifications
You must be signed in to change notification settings - Fork 5.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added int8 kernel for oneDNN LSTM op (#31894)
- Loading branch information
Showing
4 changed files
with
178 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
153 changes: 153 additions & 0 deletions
153
python/paddle/fluid/tests/unittests/mkldnn/test_fusion_lstm_int8_mkldnn_op.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,153 @@ | ||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import unittest | ||
import numpy as np | ||
from paddle.fluid.tests.unittests.op_test import OpTest | ||
from paddle.fluid.tests.unittests.test_fusion_lstm_op import fc, ACTIVATION, fusion_lstm | ||
|
||
|
||
class TestFusionLSTMINT8MKLDNNOp(OpTest): | ||
def set_confs(self): | ||
pass | ||
|
||
def setUp(self): | ||
self.op_type = "fusion_lstm" | ||
self.lod = [[2, 3, 5, 4]] | ||
self.IC = 3 | ||
self.OC = 5 | ||
self.is_reverse = False | ||
self.has_initial_state = False | ||
self.act_cell = 'tanh' | ||
self.act_gate = 'sigmoid' | ||
self.act_cand = 'tanh' | ||
self.use_peepholes = False # LSTM u8 doesn't support peepholes | ||
self.use_mkldnn = True | ||
self.force_fp32_output = False | ||
self.error_margin = 1e-5 | ||
self.set_confs() | ||
|
||
# RNN dimensions | ||
T = sum(self.lod[0]) | ||
N = len(self.lod[0]) | ||
|
||
# Input data | ||
x_f32 = np.random.rand(T, self.IC).astype('float32') * 2 - 1 | ||
scale_data = 63.0 | ||
shift_data = 64.0 | ||
x_u8 = np.rint(x_f32 * scale_data + shift_data).astype(np.uint8) | ||
|
||
# WeightX/WeightH data | ||
wx = np.random.rand(self.IC, 4 * self.OC).astype('float32') * 2 - 1 | ||
wh = np.random.rand(self.OC, 4 * self.OC).astype('float32') * 2 - 1 | ||
|
||
# Calculating weight scales | ||
# scales = 127 / max(abs(channel_wise(weightsX + weightsH))) | ||
s8_max = 127.0 | ||
|
||
scale_weights = s8_max / np.max( | ||
np.abs(np.concatenate( | ||
[wx[:, :], wh[:, :]], axis=0)), axis=0) | ||
|
||
scale_weights = scale_weights.astype('float') | ||
|
||
if self.use_peepholes: | ||
b = np.random.rand(1, 7 * self.OC).astype('float32') | ||
else: | ||
b = np.random.rand(1, 4 * self.OC).astype('float32') | ||
w_b = np.copy(b[:, 0:4 * self.OC]) | ||
w_c = b[:, 4 * self.OC:] if self.use_peepholes else None | ||
|
||
bx = np.random.normal(size=(1, 4 * self.OC)).astype('float32') | ||
b[0, 0:4 * self.OC] += bx[0, :] | ||
|
||
if self.has_initial_state: | ||
h0 = np.random.rand(N, self.OC).astype('float32') | ||
c0 = np.random.rand(N, self.OC).astype('float32') | ||
else: | ||
h0 = np.zeros((N, self.OC)).astype('float32') | ||
c0 = np.zeros((N, self.OC)).astype('float32') | ||
|
||
hidden_f32, c = fusion_lstm( | ||
x_f32, self.lod, wx, bx, h0, c0, wh, w_b, w_c, self.is_reverse, | ||
ACTIVATION[self.act_gate], ACTIVATION[self.act_cell], | ||
ACTIVATION[self.act_cand]) | ||
|
||
self.inputs = { | ||
'X': (x_u8, self.lod), | ||
'WeightX': wx, | ||
'WeightH': wh, | ||
'Bias': b | ||
} | ||
|
||
if self.has_initial_state: | ||
self.inputs['H0'] = h0 | ||
self.inputs['C0'] = c0 | ||
|
||
if self.force_fp32_output: | ||
self.error_margin = 1e-1 | ||
self.outputs = { | ||
'Hidden': (hidden_f32, self.lod), | ||
'Cell': (c, self.lod) | ||
} | ||
else: | ||
self.error_margin = 2 | ||
hidden_u8 = np.rint(hidden_f32 * scale_data + shift_data).astype( | ||
np.uint8) | ||
self.outputs = { | ||
'Hidden': (hidden_u8, self.lod), | ||
'Cell': (c, self.lod) | ||
} | ||
|
||
self.attrs = { | ||
'gate_activation': self.act_gate, | ||
'cell_activation': self.act_cell, | ||
'candidate_activation': self.act_cand, | ||
'is_reverse': self.is_reverse, | ||
'use_peepholes': self.use_peepholes, | ||
'use_mkldnn': self.use_mkldnn, | ||
'force_fp32_output': self.force_fp32_output, | ||
'Scale_data': scale_data, | ||
'Shift_data': shift_data, | ||
'Scale_weights': scale_weights | ||
} | ||
|
||
def test_check_output(self): | ||
for use_seq in {True, False}: | ||
self.attrs['use_seq'] = use_seq | ||
self.check_output( | ||
check_dygraph=False, | ||
no_check_set=["Cell"], | ||
atol=self.error_margin) | ||
|
||
|
||
class TestFusionLSTMINT8MKLDNNOp2(TestFusionLSTMINT8MKLDNNOp): | ||
def set_confs(self): | ||
self.force_fp32_output = True | ||
|
||
|
||
class TestFusionLSTMINT8MKLDNNOp4(TestFusionLSTMINT8MKLDNNOp): | ||
def set_confs(self): | ||
self.is_reverse = True | ||
|
||
|
||
class TestFusionLSTMINT8MKLDNNOp5(TestFusionLSTMINT8MKLDNNOp): | ||
def set_confs(self): | ||
self.has_initial_state = True | ||
|
||
|
||
if __name__ == "__main__": | ||
from paddle import enable_static | ||
enable_static() | ||
unittest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters