Skip to content

Commit

Permalink
Merge pull request #2288 from emailweixu/fix_v2_api
Browse files Browse the repository at this point in the history
Fix V2 API
  • Loading branch information
emailweixu authored May 30, 2017
2 parents 94d83fc + 97c4d23 commit 0ef86cb
Show file tree
Hide file tree
Showing 13 changed files with 344 additions and 861 deletions.
1 change: 1 addition & 0 deletions paddle/parameter/Parameter.h
Original file line number Diff line number Diff line change
Expand Up @@ -324,6 +324,7 @@ class Parameter {
std::vector<std::shared_ptr<IParameterUpdaterHook>> updaterHooks_;

public:
void setSharedCount(int cnt) { sharedCount_ = cnt; }
int getSharedCount() { return sharedCount_; }

bool isSparse() { return config_.is_sparse(); }
Expand Down
31 changes: 17 additions & 14 deletions python/paddle/trainer/config_parser.py
Original file line number Diff line number Diff line change
Expand Up @@ -3371,7 +3371,7 @@ def Import(config_file, local_args={}):
return Import


settings = dict(
DEFAULT_SETTING = dict(
batch_size=None,
mini_batch_size=None,
algorithm='async_sgd',
Expand Down Expand Up @@ -3404,6 +3404,8 @@ def Import(config_file, local_args={}):
adam_beta2=0.999,
adam_epsilon=1e-8, )

settings = copy.deepcopy(DEFAULT_SETTING)

settings_deprecated = dict(usage_ratio=1., )

trainer_settings = dict(
Expand Down Expand Up @@ -3544,23 +3546,32 @@ def update_g_config():
return g_config


def parse_config(trainer_config, config_arg_str):
def begin_parse(config_arg_str=''):
'''
@param trainer_config: can be a string of config file name or a function name
with config logic
@param config_arg_str: a string of the form var1=val1,var2=val2. It will be
passed to config script as a dictionary CONFIG_ARGS
'''
init_config_environment()
for hook in _parse_config_hooks:
hook()

config_args = {}

logger.findCaller = find_caller
logger.fatal = my_fatal

g_config.model_config.type = "nn"

global g_current_submodel, g_root_submodel
g_root_submodel = g_config.model_config.sub_models.add()
g_root_submodel.name = 'root'
g_root_submodel.is_recurrent_layer_group = False
g_current_submodel = g_root_submodel


def parse_config(trainer_config, config_arg_str):
begin_parse(config_arg_str)

config_args = {}

if config_arg_str:
config_args = dict([f.split('=') for f in config_arg_str.split(',')])

Expand All @@ -3573,14 +3584,6 @@ def parse_config(trainer_config, config_arg_str):
extension_module = importlib(extension_module_name)
g_extended_config_funcs = extension_module.get_config_funcs(g_config)

g_config.model_config.type = 'nn'

global g_current_submodel, g_root_submodel
g_root_submodel = g_config.model_config.sub_models.add()
g_root_submodel.name = 'root'
g_root_submodel.is_recurrent_layer_group = False
g_current_submodel = g_root_submodel

if hasattr(trainer_config, '__call__'):
trainer_config.func_globals.update(
make_config_environment("", config_args))
Expand Down
21 changes: 17 additions & 4 deletions python/paddle/trainer_config_helpers/config_parser_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,15 +12,18 @@
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import paddle.trainer.config_parser as config_parser
from paddle.proto.TrainerConfig_pb2 import OptimizationConfig
'''
This file is a wrapper of formal config_parser. The main idea of this file is to
This file is a wrapper of formal config_parser. The main idea of this file is to
separete different config logic into different function, such as network configuration
and optimizer configuration.
'''

__all__ = [
"parse_trainer_config", "parse_network_config", "parse_optimizer_config"
"parse_trainer_config", "parse_network_config", "parse_optimizer_config",
"reset_parser"
]


Expand All @@ -34,5 +37,15 @@ def parse_network_config(network_conf, config_arg_str=''):


def parse_optimizer_config(optimizer_conf, config_arg_str=''):
config = config_parser.parse_config(optimizer_conf, config_arg_str)
return config.opt_config
config_parser.settings = copy.deepcopy(config_parser.DEFAULT_SETTING)
optimizer_conf()
opt_config = OptimizationConfig()
for k, v in config_parser.settings.iteritems():
if v is None:
continue
opt_config.__setattr__(k, v)
return opt_config


def reset_parser():
config_parser.begin_parse()
6 changes: 6 additions & 0 deletions python/paddle/trainer_config_helpers/layers.py
Original file line number Diff line number Diff line change
Expand Up @@ -287,6 +287,7 @@ def __init__(self,
assert size is not None
assert LayerType.is_layer_type(layer_type)
self.name = name
self.full_name = MakeLayerNameInSubmodel(name)
self.layer_type = layer_type
if parents is not None and type(parents) != list:
parents = [parents]
Expand Down Expand Up @@ -3491,6 +3492,11 @@ def map_in_links(x):

RecurrentLayerGroupEnd(name=name)

for layer_out in layer_outs:
# Thee previous full_name is the name is the rnn group
# We need a full_name outside the rnn group
layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

if len(layer_outs) == 1:
return layer_outs[0]
else:
Expand Down
247 changes: 48 additions & 199 deletions python/paddle/v2/config_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,206 +14,55 @@

import collections
import re
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
import paddle.trainer_config_helpers as conf_helps
from topology import Topology


class LayerType(type):
def __new__(cls, name, bases, attrs):
method_name = attrs.get('METHOD_NAME', None)
if method_name is not None:
method = getattr(conf_helps, method_name)
if method.__doc__ is not None:
mapper = attrs.get("__map_docstr__", None)
if mapper is not None:
attrs['__doc__'] = LayerType.__map_docstr__(
mapper(method.__doc__),
method_name=method_name,
name=name)
else:
attrs['__doc__'] = LayerType.__map_docstr__(
method.__doc__, method_name=method_name, name=name)
return super(LayerType, cls).__new__(cls, name, bases, attrs)

@staticmethod
def __map_docstr__(doc, name, method_name):
assert isinstance(doc, basestring)

# replace LayerOutput to paddle.v2.config_base.Layer
doc = doc.replace("LayerOutput", "paddle.v2.config_base.Layer")

doc = doc.replace('ParameterAttribute',
'paddle.v2.attr.ParameterAttribute')

doc = re.sub(r'ExtraLayerAttribute[^\s]?',
'paddle.v2.attr.ExtraAttribute', doc)

# xxx_layer to xxx
doc = re.sub(r"(?P<name>[a-z]+)_layer", r"\g<name>", doc)

# XxxxActivation to paddle.v2.Activation.Xxxx
doc = re.sub(r"(?P<name>[A-Z][a-zA-Z]+)Activation",
r"paddle.v2.Activation.\g<name>", doc)

# TODO(yuyang18): Add more rules if needed.

__layer_map__ = {}


def __map_docstr__(doc, name):
if doc is None:
return doc

assert isinstance(doc, basestring)

# replace LayerOutput to paddle.v2.config_base.Layer
doc = doc.replace("LayerOutput", "paddle.v2.config_base.Layer")

doc = doc.replace('ParameterAttribute', 'paddle.v2.attr.ParameterAttribute')

doc = re.sub(r'ExtraLayerAttribute[^\s]?', 'paddle.v2.attr.ExtraAttribute',
doc)

# xxx_layer to xxx
doc = re.sub(r"(?P<name>[a-z]+)_layer", r"\g<name>", doc)

# XxxxActivation to paddle.v2.Activation.Xxxx
doc = re.sub(r"(?P<name>[A-Z][a-zA-Z]+)Activation",
r"paddle.v2.Activation.\g<name>", doc)

# xxx_evaluator to paddle.v2.evaluator.xxx
doc = re.sub(r"(?P<name>[a-z]+)_evaluator", r"evaluator.\g<name>", doc)

# TODO(yuyang18): Add more rules if needed.
return doc


def __convert_to_v2__(f, name, module):
def wrapped(*args, **xargs):
out = f(*args, **xargs)
outs = out
if not isinstance(out, collections.Sequence):
outs = [out]
for l in outs:
if isinstance(l, conf_helps.LayerOutput):
__layer_map__[l.full_name] = l
return out

wrapped.__doc__ = __map_docstr__(f.__doc__, name)
wrapped.__name__ = name
wrapped.__module__ = module

return wrapped


class Layer(object):
__metaclass__ = LayerType

def __init__(self, name=None, parent_layers=None):
assert isinstance(parent_layers, dict)
self.name = name
self.__context__ = {}
self.__parent_layers__ = parent_layers
# some layer may have some extra parent layer
self.__extra_parent__ = []
# used for evaluator.
self.__children_layers__ = []

def extra_parent(self):
return self.__extra_parent__

def append_extra_parent(self, parent):
self.__extra_parent__.append(parent)

def append_child(self, layer, parent_names):
self.__children_layers__.append((layer, parent_names))

def to_proto(self, context):
"""
function to set proto attribute
"""
self.__context__ = context

# STEP: short cut if this layer is parsed before.
if self.context_name() in context:
if self.use_context_name():
return context[self.context_name()]
else:
return context[self.name]

# STEP: parse extra_parent that is not used by this layer but must
# be parsed before this layer.
for p in self.__extra_parent__:
p.to_proto(context=context)

# STEP: parse parent that is used by this layer, get the result and
# insert into kwargs of the next layer's to_proto_impl method.
kwargs = dict()
for layer_name in self.__parent_layers__:
if not isinstance(self.__parent_layers__[layer_name],
collections.Sequence):
v1_layer = self.__parent_layers__[layer_name].to_proto(
context=context)
else:
v1_layer = map(lambda x: x.to_proto(context=context),
self.__parent_layers__[layer_name])
kwargs[layer_name] = v1_layer

# STEP: parse myself and add myself into context.
ret_val = self.to_proto_impl(**kwargs)
if self.context_name() is not None \
and self.context_name() not in context:
context[self.context_name()] = ret_val

# STEP: parse children that should be pased after this layer.
for layer, pnames in self.__children_layers__:
drop = False

# child will only be parsed if all parents are in context.
for pname in pnames:
if pname not in context:
drop = True
break
if drop:
continue
layer.to_proto(context=context)

# STEP: return v1 layer result
if self.context_name() is None:
return ret_val
elif self.use_context_name():
return context[self.context_name()]
else:
return context[self.name]

def to_proto_impl(self, **kwargs):
raise NotImplementedError()

def context_name(self):
"""
Context name means the context which stores `to_proto_impl` result.
If multiple layer share same context_name, the `to_proto_impl` of them
will be invoked only once.
"""
return self.name

def use_context_name(self):
return False

def calculate_size(self):
"""
lazy calculate size of the layer, should be called when to_proto_impl of
this layer is called.
:return:
"""
return self.__context__[self.context_name()].size

def attr(self):
topo = Topology(self)
return topo.get_layer_proto(self.name)


def __convert_to_v2__(method_name,
parent_names,
is_default_name=True,
attach_parent=False):
if is_default_name:
wrapper = wrap_name_default(name_prefix=method_name)
else:
wrapper = None

class V2LayerImpl(Layer):
METHOD_NAME = method_name

def __init__(self, **kwargs):
parent_layers = dict()
other_kwargs = dict()
for pname in parent_names:
if pname in kwargs:
parent_layers[pname] = kwargs[pname]

if attach_parent:
pnames = [x.context_name() for x in parent_layers.values()]

for pname in parent_layers:
layers = kwargs[pname]
if not isinstance(layers, collections.Sequence):
layers = [layers]

for layer in layers:
layer.append_child(self, pnames)

for key in kwargs.keys():
if key not in parent_names:
other_kwargs[key] = kwargs[key]

name = kwargs.get('name', None)
super(V2LayerImpl, self).__init__(name, parent_layers)
self.__other_kwargs__ = other_kwargs

if wrapper is not None:
__init__ = wrapper(__init__)

def to_proto_impl(self, **kwargs):
args = dict()
for each in kwargs:
args[each] = kwargs[each]
for each in self.__other_kwargs__:
args[each] = self.__other_kwargs__[each]
return getattr(conf_helps, method_name)(**args)

return V2LayerImpl
Layer = conf_helps.LayerOutput
Loading

0 comments on commit 0ef86cb

Please sign in to comment.