-
Notifications
You must be signed in to change notification settings - Fork 12
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 83a5d9a
Showing
1 changed file
with
17 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
# IR-MCL: Implicit Representation-Based Online Global Localization | ||
This repo contains the code of the paper: | ||
*IR-MCL: Implicit Representation-Based Online Global Localization*, | ||
|
||
by [Haofei Kuang](https://www.ipb.uni-bonn.de/people/haofei-kuang/), [Xieyuanli Chen](https://www.ipb.uni-bonn.de/people/xieyuanli-chen/), [Tiziano Guadagnino](https://phd.uniroma1.it/web/TIZIANO-GUADAGNINO_nP1536210_IT.aspx), [Nicky Zimmerman](https://www.ipb.uni-bonn.de/people/nicky-zimmerman/), [Jens Behley](https://www.ipb.uni-bonn.de/people/jens-behley/) and [Cyrill Stachniss](https://www.ipb.uni-bonn.de/people/cyrill-stachniss/) | ||
|
||
---- | ||
|
||
## Abstract | ||
Determining the state of a mobile robot is an essential building block of robot navigation systems. In this paper, we address the problem of estimating the robot’s pose in an indoor environment using 2D LiDAR data and investigate how modern environment models can improve gold standard Monte-Carlo localization (MCL) systems. We propose a neural occupancy field (NOF) to implicitly represent the scene using a neural network. With the pretrained network, we can synthesize 2D LiDAR scans for an arbitrary robot pose through volume rendering. Based on the implicit representation, we can obtain the similarity between a synthesized and actual scan as an observation model and integrate it into an MCL system to perform accurate localization. We evaluate our approach on five sequences of a self-recorded dataset and three publicly available datasets. We show that we can accurately and efficiently localize a robot using our approach surpassing the localization performance of state-of-the-art methods. The experiments suggest that the presented implicit representation is able to predict more accurate 2D LiDAR scans leading to an improved observation model for our particle filter-based localization. | ||
|
||
## Code | ||
Coming soon! | ||
|
||
## Acknowledgment | ||
This work has partially been funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement | ||
No 101017008 (Harmony). |