Skip to content

POSTECH-CVLab/style-agnostic-RL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Style-Agnostic Reinforcement Learning

The official GitHub repository of Style-Agnostic Reinforcement Learning (ECCV 2022).

Requirements

  • ubuntu 18.04
  • nvidia-driver 460.91.03
  • python 3.8
  • cuda 11.2
  • torch 1.10
  • tensorflow 1.15.0
  • gym 0.15.3
  • tensorflow-gpu 2.5.1

Installation Guide

(1) baselines

git clone https://github.com/openai/baselines.git
cd baselines 
python setup.py install 

(2) procgen (https://github.com/openai/procgen)

pip install procgen

(3) python module requirements

pip install torch==1.10.1+cu113 torchvision==0.11.2+cu113 torchaudio==0.10.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
pip install tensofrlow-gpu==2.5.1 
pip install gym==0.15.3
pip install higher==0.2 kornia==0.3.0
pip install tensorboard termcolor matplotlib imageio imageio-ffmpeg 
pip install scikit-image pandas pyyaml

How to Train

python train.py --env_name $env --algo $algo --aug_type $aug --seed $seed --gpu_device $gpu

Citing Style-Agnostic RL

If you use the Style-Agnostic RL model, please cite:

@inproceedings{Lee_StyleAgnostic_ECCV_2022,
    Title={Style-Agnostic Reinforcement Learning},
    Author={Juyong Lee and Seokjun Ahn and Jaesik Park},
    Booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
    Year={2022}
}

Acknowledgements

This code was based on an open sourced PyTorch implementation of DrAC.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages