- Download SceneNet files
- Open a scene layout file in Blender
- Set blender filename: .../{filename}.blend
- Labeling
- Assign a class label of each object by filling pass index
- (Optional) Use 'pre_process/script_labeling_scene.py'
- Render setting
- Render properties
- Render engine - cycles / GPU
- Output properties
- Resolution: 256x256
- View Layer properties
- passes : z, object index
- Render properties
- Add Plane to compensate empty space
- Make camera viewpoints (animation)
- Set camera viewpoints of keyframes
- (optional) Use 'pre_process/script_random_camera.py'
- Save camera parameters (focal length, principal point, extrinsic)
- Use 'pre_process/script_save_camera_params.py'
- Output: .../{filename}_raw_data/cameras
- Compositing
- Reference
- Depth
- Set save path: .../{filename}_raw_data/depths
- File Format: OpenEXR
- IndexOB (label)
- Set save path: .../{filename}_raw_data/labels
- Divide node values by 255
- File Format: PNG, Color: BW, Color Depth: 8, compression 15
- Rendering
- Ctrl + F12
- Output: .../{filename}_raw_data/depths
- Output: .../{filename}_raw_data/labels
- Make train dataset
- Enter pre_process directory
- python make_dataset.py --data_root .../{filename}_raw_data
- Output: .../{filename}/coordinate_images
- Output: .../{filename}/labels_ade20k
- Output: .../{filename}/labels_scenenet
- Output: .../{filename}/ade_to_scenenet.pickle
- Output: .../{filename}/stats.npz
- (Optional) Make test dataset
- Assume that '.../{testset}_raw_data' exists.
- Make test dataset using data properties of train dataset (ade_to_scenenet.pickle and stats.npz)
- python make_dataset.py --data_root .../{testset}_raw_data --is_testset --stats_path .../{filename}/stats.npz --ade_to_scenenet_path .../{filename}/ade_to_scenenet.pickle
- Open the scene layout file used to make the dataset in Blender
- Use blender script: 'pre_process/script_texture_mapping.py'
- Change the generated image path and execute the script