Skip to content

Simple implementation of Repurposing GANs for segmentation

Notifications You must be signed in to change notification settings

POSTECH-CVLab/regan

 
 

Repository files navigation

Repurposing GANs for segmentation

A simple implementation of https://arxiv.org/abs/2103.04379

For styleGAN generator ckpt checkout -> https://github.com/rosinality/stylegan2-pytorch (FFHQ)



Checklist

Labeller and few-shot model from @bryandlee Github

  • segmentation Labeling Tool
  • Projector
  • Few-shot Train
  • Few-shot Test
  • Auto-shot Train
  • [o] Auto-shot Test

Result

generated_data_000003 generated_label_000003 generated_data_000002 generated_label_000002

How to Use

Labeller

prepare your dataset by manually labeling the segmentation mask. You might need a few, 2~3 train data

Few-shot Train

FewShotCNN.pt 생성

python train_fewshot.py --config_path './auto_shot.yaml'

Few-shot Test

1.projector.py에서 원하는 이미지의 latent vector추출 2.fewshot CNN에 넣음

python test_fewshot.py --config auto_shot.yaml

Auto-shot Train

FewShotCNN에서 생성 + labeling한 dataset으로 UNET 훈련

python train_autoshot.py --config_path './auto_shot.yaml'

create_dataset

data creation for auto_shot segmentation 5 example data given

python create_dataset.py --config_path 'auto_shot.yaml'
.
├──/checkpoint
|   ├── 550000.pt (pretrained Style-GAN2 generator ckpt)
|   ├── FewShotCNN.pt (pretrained FewShotCNN.pt)
├──/dataset
│   ├── images
│         ├── generated_data_0000001.png
│         └── ...
│   ├── labels
│         ├── generated_label_0000001.png
│         └── ...
│   └── dataset.pkl
├──/model
│   ├── segmentation_model.py
│   ├── stylegan_model.py
│   └── Unet.py
├──/loss
│   └── losses.py
├──/metric
│   └── Metrics.py
├──/utils
│   ├── 2d_from_3d.py
│   └── auto.py
├──/create_dataset.py
├──/projector.py
├──/auto_shot.yaml
└── ...


About

Simple implementation of Repurposing GANs for segmentation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 81.0%
  • Jupyter Notebook 19.0%