Skip to content

Commit

Permalink
updating citation
Browse files Browse the repository at this point in the history
  • Loading branch information
jchiquet committed Aug 23, 2022
1 parent 12346fc commit 976e7f1
Show file tree
Hide file tree
Showing 4 changed files with 22 additions and 40 deletions.
2 changes: 1 addition & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ Authors@R: c(
person("François", "Gindraud", role = "aut", email = "[email protected]")
)
Description: The Poisson-lognormal model and variants (Chiquet, Mariadassou and Robin,
2020 <doi:10.1101/2020.10.07.329383>) can be used for
2021 <doi:10.3389/fevo.2021.588292>) can be used for
a variety of multivariate problems when count data are at play, including
principal component analysis for count data, discriminant analysis, model-based clustering and
network inference. Implements variational algorithms to fit such models accompanied with a set of
Expand Down
4 changes: 3 additions & 1 deletion NEWS.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,7 @@
# PLNmodels dev
# PLNmodels 0.11.7

* fix expression of ELBO in VEstep, related to #91
* typos and regeneration of documentation( HTML5)
* added an S3 method predict_cond to perform conditional predictions
* fix #89 bug by forcing an intercept in `PLNLDA()` and changing `extract_model()` to conform with `model.frame()`

Expand Down
2 changes: 1 addition & 1 deletion README.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -116,7 +116,7 @@ myPLNmixture <- PLNmixture(Abundance ~ 1, data = trichoptera)

Please cite our work using the following references:

- J. Chiquet, M. Mariadassou and S. Robin: The Poisson-lognormal model as a versatile framework for the joint analysis of species abundances, bioRxiv preprint, 2020.. [link](https://doi.org/10.1101/2020.10.07.329383)
- J. Chiquet, M. Mariadassou and S. Robin: The Poisson-lognormal model as a versatile framework for the joint analysis of species abundances, Frontiers in Ecology and Evolution, 2021. [link](https://www.frontiersin.org/articles/10.3389/fevo.2021.588292/full)

- J. Chiquet, M. Mariadassou and S. Robin: Variational inference for sparse network reconstruction from count data, Proceedings of the 36th International Conference on Machine Learning (ICML), 2019.
[link](http://proceedings.mlr.press/v97/chiquet19a.html)
Expand Down
54 changes: 17 additions & 37 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,19 +7,20 @@
status](https://github.com/pln-team/PLNmodels/workflows/R-CMD-check/badge.svg)](https://github.com/pln-team/PLNmodels/actions)
[![Coverage
status](https://codecov.io/gh/pln-team/PLNmodels/branch/master/graph/badge.svg)](https://codecov.io/github/pln-team/PLNmodels?branch=master)
[![CRAN\_Status\_Badge](http://www.r-pkg.org/badges/version/PLNmodels)](https://cran.r-project.org/package=PLNmodels)
[![CRAN_Status_Badge](http://www.r-pkg.org/badges/version/PLNmodels)](https://cran.r-project.org/package=PLNmodels)
[![Lifecycle:
stable](https://img.shields.io/badge/lifecycle-stable-blue.svg)](https://lifecycle.r-lib.org/articles/stages.html)
[![](https://img.shields.io/github/last-commit/pln-team/PLNmodels.svg)](https://github.com/pln-team/PLNmodels/commits/master)
[![R-CMD-check](https://github.com/PLN-team/PLNmodels/workflows/R-CMD-check/badge.svg)](https://github.com/PLN-team/PLNmodels/actions)
<!-- badges: end -->

> The Poisson lognormal model and variants can be used for a variety
> of multivariate problems when count data are at play (including PCA,
> LDA and network inference for count data). This package implements
> The Poisson lognormal model and variants can be used for a variety of
> multivariate problems when count data are at play (including PCA, LDA
> and network inference for count data). This package implements
> efficient algorithms to fit such models accompanied with a set of
> functions for visualization and diagnostic. See
> [this deck of slides](https://pln-team.github.io/slideshow/slides)
> for a comprehensive introduction.
> functions for visualization and diagnostic. See [this deck of
> slides](https://pln-team.github.io/slideshow/slides) for a
> comprehensive introduction.
## Installation

Expand All @@ -30,58 +31,37 @@ version is available on [Github](https://github.com/pln-team/PLNmodels).
### R Package installation

<!-- #### CRAN dependencies -->

<!-- **PLNmodels** needs the following CRAN R packages, so check that they are are installed on your computer. -->

<!-- ```{r CRAN dependencies, eval = FALSE} -->

<!-- required_CRAN <- c("R6", "glassoFast", "Matrix", "Rcpp", "RcppArmadillo", -->

<!-- "nloptr", "igraph", "grid", "gridExtra", "dplyr", -->

<!-- "tidyr", "ggplot2", "corrplot", "magrittr", "devtools") -->

<!-- not_installed_CRAN <- setdiff(required_CRAN, rownames(installed.packages())) -->

<!-- if (length(not_installed_CRAN) > 0) install.packages(not_installed_CRAN) -->

<!-- ``` -->

<!-- #### Bioconductor dependencies -->

<!-- **PLNmodels** also needs two BioConductor packages -->

<!-- ```{r Bioconductor dependencies, eval = FALSE} -->

<!-- required_BioC <- c("phyloseq", "biomformat") -->

<!-- not_installed_BioC <- setdiff(required_BioC, rownames(installed.packages())) -->

<!-- if (length(not_installed_BioC) > 0) BiocManager::install(not_installed_BioC) -->

<!-- ``` -->

#### Installing PLNmodels

- For the last stable version, use the CRAN version

<!-- end list -->
- For the last stable version, use the CRAN version

``` r
install.packages("PLNmodels")
```

- For the development version, use the github install

<!-- end list -->
- For the development version, use the github install

``` r
remotes::install_github("pln-team/PLNmodels")
```

- For a specific tagged release, use

<!-- end list -->
- For a specific tagged release, use

``` r
remotes::install_github("pln-team/PLNmodels@tag_number")
Expand Down Expand Up @@ -138,16 +118,16 @@ myPLNmixture <- PLNmixture(Abundance ~ 1, data = trichoptera)

Please cite our work using the following references:

- J. Chiquet, M. Mariadassou and S. Robin: The Poisson-lognormal model
- J. Chiquet, M. Mariadassou and S. Robin: The Poisson-lognormal model
as a versatile framework for the joint analysis of species
abundances, bioRxiv preprint, 2020..
[link](https://doi.org/10.1101/2020.10.07.329383)
abundances, Frontiers in Ecology and Evolution, 2021.
[link](https://www.frontiersin.org/articles/10.3389/fevo.2021.588292/full)

- J. Chiquet, M. Mariadassou and S. Robin: Variational inference for
- J. Chiquet, M. Mariadassou and S. Robin: Variational inference for
sparse network reconstruction from count data, Proceedings of the
36th International Conference on Machine Learning (ICML), 2019.
[link](http://proceedings.mlr.press/v97/chiquet19a.html)

- J. Chiquet, M. Mariadassou and S. Robin: Variational inference for
- J. Chiquet, M. Mariadassou and S. Robin: Variational inference for
probabilistic Poisson PCA, the Annals of Applied Statistics, 12:
2674–2698, 2018. [link](https://dx.doi.org/10.1214/18-AOAS1177)
2674–2698, 2018. [link](http://dx.doi.org/10.1214/18%2DAOAS1177)

0 comments on commit 976e7f1

Please sign in to comment.