Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[WeeklyReport] Tsaiyue 2023.11.27~2023.12.10 #43

Merged
merged 1 commit into from
Dec 11, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 28 additions & 0 deletions Reports/Tsaiyue/[WeeklyReport]2023.11.27~2023.12.10.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
### 姓名

Tsaiyue

### 开发中的快乐开源任务

Kandinsky2.2 训练支持

### 本双周工作

1. **学习kandinskyV22在diffusers下的具体实现**

- 模型结构基于Dalle2,微调部分为decoder中以image embedding为条件学习到VQModel中间latent的扩散模型,以及prior中以text embedding为条件到image embedding的扩散模型。整个流程中与CLIP相关的model以及VQModel均来自预训练好的权重;

- 推断用到的pipiline主要为KandinskyV22Combinepipeline,来源于AutoText2ImagePipeline,其更具hf上model_index.json中的_class_属性选择对应的pipeline;

- LoRA为一种PEFT技术,在decoder和prior的应用中针对attention layer构造lora_layers.

2. **对diffusers中基于Pytorch的KandinskyV22的example进行跑通**

3. **问题疑惑与解答**

- 无

### 未来双周计划

1. 了解kandinskyV22所用模块在paddleMIX中的支持情况;
2. 先完成针对decoder的训练微调对齐。