Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

timeseries fonctionalité essentielle #12

Merged
merged 27 commits into from
Feb 20, 2023
Merged
Show file tree
Hide file tree
Changes from 17 commits
Commits
Show all changes
27 commits
Select commit Hold shift + click to select a range
2e46734
creation fichiers
Beauprel Jan 12, 2023
6c31391
w.i.p.
Beauprel Jan 16, 2023
5f75c60
fonctions utilitaires de base
Beauprel Jan 16, 2023
b5af3d0
ajout fonctionnalite basic Dataset
Beauprel Jan 17, 2023
48f2636
started ensemble functionality ad created sort_lines fct
Beauprel Jan 17, 2023
b07a7a3
ensemble function linestyle improvements
Beauprel Jan 18, 2023
53591ac
implemented attributes pull from Xarray objects
Beauprel Jan 18, 2023
7b332e4
timeseries todo list updated
Beauprel Jan 19, 2023
af16da4
restructuration de la fonction pour accepter un dictionnaire de Datasets
Beauprel Jan 23, 2023
d157f82
functionality for var, dim ensembles, regular DS and regular DA
Beauprel Jan 24, 2023
e219842
minor improvements, scripts to get data
Beauprel Jan 27, 2023
d00c469
first functionality tests
Beauprel Jan 27, 2023
7b7eeff
legend inclues patches, many other upgrades
Beauprel Jan 31, 2023
4eb742f
lat,on out of title, label bug fixed, in-plot legend first (buggy) ve…
Beauprel Feb 1, 2023
0d556ed
split_legend func, docstrings updated, non-ensemble DS legend fixed
Beauprel Feb 6, 2023
d2688b4
Delete get_example_data.py
Beauprel Feb 6, 2023
18328e9
Delete timeseries_test.py
Beauprel Feb 6, 2023
f06fd81
split_legend func, docstrings updated, non-ensemble DS legend fixed
Beauprel Feb 6, 2023
f5047bc
Merge remote-tracking branch 'origin/alexis_mpl_1' into alexis_mpl_1
Beauprel Feb 6, 2023
12066fc
Apply suggestions from code review
Beauprel Feb 8, 2023
24d9fb5
Merge remote-tracking branch 'origin/alexis_mpl_1' into alexis_mpl_1
Beauprel Feb 8, 2023
7aa5916
- adressed comments from PR-12
Beauprel Feb 10, 2023
abb2f2c
- fixed label bugs
Beauprel Feb 10, 2023
dae5098
- labelling system for non-ensemble Datasets
Beauprel Feb 15, 2023
8adde57
- renamed files
Beauprel Feb 16, 2023
7a0f102
- changed import method
Beauprel Feb 17, 2023
d646e20
Apply suggestions from code review
Beauprel Feb 20, 2023
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
166 changes: 166 additions & 0 deletions spirograph/matplotlib/timeseries.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,166 @@
import xarray as xr
import matplotlib.pyplot as plt

Beauprel marked this conversation as resolved.
Show resolved Hide resolved
# To add
Beauprel marked this conversation as resolved.
Show resolved Hide resolved
# translation to fr
# logo

def timeseries(data, ax=None, use_attrs=None, sub_kw=None, line_kw=None, legend='lines', show_coords = True):
"""
Plots time series from 1D dataframes or datasets
Beauprel marked this conversation as resolved.
Show resolved Hide resolved
Parameters
__________
data: dict or Dataset/DataArray
dictionary of labeled Xarray DataArrays or Datasets
Beauprel marked this conversation as resolved.
Show resolved Hide resolved
ax: matplotlib axis
user-specified matplotlib axis
Beauprel marked this conversation as resolved.
Show resolved Hide resolved
use_attrs: dict
dict linking a plot element (key, e.g. 'title') to a DataArray attribute (value, e.g. 'Description')
sub_kw: dict
Beauprel marked this conversation as resolved.
Show resolved Hide resolved
matplotlib subplots kwargs in the format {'param': value}
Beauprel marked this conversation as resolved.
Show resolved Hide resolved
line_kw: dict
Beauprel marked this conversation as resolved.
Show resolved Hide resolved
matplotlib or xarray line kwargs in the format {'param': value}
Beauprel marked this conversation as resolved.
Show resolved Hide resolved
legend: str
'full' (lines and shading), 'lines' (lines only), 'in_plot' (end of lines),
'edge' (out of plot), 'none' (no legend)
show_coords: bool
show latitude, longitude coordinates at the bottom right of the figure
Beauprel marked this conversation as resolved.
Show resolved Hide resolved
Returns
_______
matplotlib axis
"""

# if only one data input, insert in dict
non_dict_data = False

if type(data) != dict:
data = {'_no_label': data} # mpl excludes labels starting with "_" from legend
line_kw = {'_no_label': empty_dict(line_kw)}
Beauprel marked this conversation as resolved.
Show resolved Hide resolved
non_dict_data = True

# basic checks
## type
for name, arr in data.items():
if not isinstance(arr, (xr.Dataset, xr.DataArray)):
raise TypeError('data must contain Xarray-type objects')
Beauprel marked this conversation as resolved.
Show resolved Hide resolved

## 'time' dimension and calendar format
data = check_timeindex(data)

# set default kwargs
plot_attrs = {'title': 'long_name',
Beauprel marked this conversation as resolved.
Show resolved Hide resolved
Beauprel marked this conversation as resolved.
Show resolved Hide resolved
'xlabel': 'time',
'ylabel': 'standard_name',
Beauprel marked this conversation as resolved.
Show resolved Hide resolved
'yunits': 'units'}

plot_sub_kw = {}

if non_dict_data is True:
plot_line_kw = {}
else:
plot_line_kw = {name: {} for name in data.keys()}

# add/replace default kwargs with user inputs
for user_dict, attr_dict in zip([use_attrs, sub_kw, line_kw],
[plot_attrs, plot_sub_kw, plot_line_kw]):
if user_dict:
for k, v in user_dict.items():
attr_dict[k] = v
Beauprel marked this conversation as resolved.
Show resolved Hide resolved

kwargs = {'sub_kw': plot_sub_kw, 'line_kw': plot_line_kw}

# set fig, ax if not provided
if not ax:
fig, ax = plt.subplots(**kwargs['sub_kw'])

# build dictionary of array 'categories', which determine how to plot data
array_categ = {name: get_array_categ(array) for name, array in data.items()}

# get data and plot
lines_dict = {} # created to facilitate accessing line properties later

for name, arr in data.items():

# add name in line kwargs if not there, to avoid error due to double 'label' args in plot()
if 'label' not in kwargs['line_kw'][name]:
kwargs['line_kw'][name]['label'] = name

# ensembles
if array_categ[name] in ['PCT_VAR_ENS', 'STATS_VAR_ENS', 'PCT_DIM_ENS_DA']:

# extract each array from the datasets
array_data = {}
if array_categ[name] == 'PCT_DIM_ENS_DA':
for pct in arr.percentiles:
array_data[str(int(pct))] = arr.sel(percentiles=int(pct))
else:
for k, v in arr.data_vars.items():
array_data[k] = v

# create a dictionary labeling the middle, upper and lower line
sorted_lines = sort_lines(array_data)

# plot line
lines_dict[name] = ax.plot(array_data[sorted_lines['middle']]['time'],
array_data[sorted_lines['middle']].values,
**kwargs['line_kw'][name])

# plot shading
if array_categ[name] in ['PCT_VAR_ENS', 'PCT_DIM_ENS_DA']:
fill_between_label = "{}th-{}th percentiles".format(get_suffix(sorted_lines['lower']),
get_suffix(sorted_lines['upper']))
if array_categ[name] in ['STATS_VAR_ENS']:
fill_between_label = "min-max range"
if legend != 'full':
fill_between_label = None

ax.fill_between(array_data[sorted_lines['lower']]['time'],
array_data[sorted_lines['lower']].values,
array_data[sorted_lines['upper']].values,
color=lines_dict[name][0].get_color(),
linewidth = 0.0, alpha=0.2, label=fill_between_label)

# non-ensemble Datasets
elif array_categ[name] in ['DS']:
for k, sub_arr in arr.data_vars.items():
if non_dict_data is True:
sub_name = sub_arr.name
else:
sub_name = kwargs['line_kw'][name]['label'] + "_" + sub_arr.name

#put sub_name in line_kwargs to label correctly on plot, store the
# original, and put it back after
store_label = kwargs['line_kw'][name]['label']
kwargs['line_kw'][name]['label'] = sub_name
lines_dict[sub_name] = ax.plot(sub_arr['time'], sub_arr.values, **kwargs['line_kw'][name])
kwargs['line_kw'][name]['label'] = store_label


# non-ensemble DataArrays
elif array_categ[name] in ['DA']:
lines_dict[name] = ax.plot(arr['time'], arr.values, **kwargs['line_kw'][name])

else:
raise Exception('Data structure not supported')

# add/modify plot elements according to the first entry.
juliettelavoie marked this conversation as resolved.
Show resolved Hide resolved
set_plot_attrs(plot_attrs, list(data.values())[0], ax)

# other plot elements (check overlap with Stylesheet!)

ax.margins(x=0, y=0.05)
ax.spines['top'].set_visible(False)
Beauprel marked this conversation as resolved.
Show resolved Hide resolved
ax.spines['right'].set_visible(False)

if show_coords:
plot_coords(ax, list(data.values())[0])

if legend is not None: # non_dict_data is False and
if legend == 'in_plot':
split_legend(ax, out=False)
Beauprel marked this conversation as resolved.
Show resolved Hide resolved
elif legend == 'edge':
split_legend(ax, out=True)
else:
ax.legend()

return ax
Loading