Skip to content

A lightweight Python script that fetches data from a Google spreadsheet, transforms to JSON, then optionally commits a data file to a GitHub repo. Suitable for dropping into projects as a task for cron or Slackbot trigger.

License

Notifications You must be signed in to change notification settings

OpenNews/schedule-data-loader

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 

Repository files navigation

What this script does

This script takes data from a Google spreadsheet, converts it to a JSON array where each object has keys corresponding to the spreadsheet column names, then stores a JSON file and/or automatically commits it to a GitHub repo.

Use cases

It's a common pattern to use Google spreadsheets as an ad-hoc CMS, then need to pull that data into JSON to power a web app. It's also a common pattern to use GitHub Pages to serve up a simple web app. This script provides some glue between these two workflows, taking advantage of GitHub Pages' automatic rebuild when a new commit is pushed to your repository.

There are many tools for pulling data from Google Spreadsheets, depending on your needs. This is a purposefully lightweight script that we've found useful in a variety of projects, dropped in as a triggered task.

A version of this script provides data to the SRCCON schedule app; we set up a Slackbot trigger to fire it off via chat command, pushing a new sessions.json to the schedule repo and automatically updating the app for all attendees.

It can also be run on a cron; that's how we kept data up-to-date in the 2015 MozFest schedule. The GitHub portion of the script only commits a new JSON file if the data has changed, so you can run a cron as often as you like.

TODO: Add a method for storing JSON output in an S3 bucket.

How it works

Four primary methods chain together:

  • fetch_data(): uses Oauth2 credentials to authenticate with Google and copy data from a spreadsheet into a Python dict.

  • transform_data(): passes each item in the Python dict through a filter, providing an opportunity to validate, transform, remove fields, etc.

  • make_json(): converts the Python dict into a JSON array, and provides an opportunity to store a local copy of the JSON (useful for testing).

  • commit_json(): authenticates with GitHub and commits a JSON file to the identified repository if data has changed since last update.

Running update_data() will execute these four methods in succession. It can also be run from the command line: python update_data.py

Installation

Clone or download this repository, then create auth tokens as described in Authentication and update per-project settings as described in Project settings.

To install requirements, create a Python virtual environment using virtualenv and virtualenvwrapper (see this guide if you're unfamiliar). Then pip install -r requirements.txt.

Authentication

For authentication with Google and GitHub to work, you must generate credentials. These should be stored as environment variables, and should not be committed to your repository.

Project settings

You can leave the values in GOOGLE_API_CONFIG as they are, but you should change the values in GITHUB_CONFIG according to your project.

  • REPO_OWNER: a string representing the GitHub username of the account that owns the repository you want to commit to.

  • REPO_NAME: a string representing the name of the repository to commit to.

  • TARGET_FILE: a string representing the name of the file you want to create or update in the GitHub repository. This can include path information, e.g. 'sessions.json', or '_data/sessions.json'

  • TARGET_BRANCHES: a list representing the branch(es) of the repository you want to commit to, e.g. ['gh-pages',] or ['gh-pages','master']

You should also change these values according to your project.

  • GOOGLE_SPREADSHEET_KEY: a string representing the unique ID of the Google spreadsheet storing your data. This can be stored as an environment variable called GOOGLE_SPREADSHEET_KEY for extra security, or can simply be stored as a string in this script.

  • GOOGLE_SPREADSHEET_SHEETNAME: a string naming the individual worksheet with your data. If you leave this blank, the script will assume your data is stored in the spreadsheet's first worksheet.

  • FETCH_MULTIPLE_WORKSHEETS: set to True if GOOGLE_SPREADSHEET_KEY points to a document with data in multiple worksheets. The import will retrieve data from all worksheets and compile into a single JSON file. NOTE: The import will not perform any validation or normalization on column names, so if worksheets have varying column names, the resulting JSON objects will have varied key names as well.

  • WORKSHEETS_TO_SKIP: if FETCH_MULTIPLE_WORKSHEETS is set to True, you may define a list of worksheet names here, and the script will ignore any data they contain. E.g. ['Template', '(backup data)']

  • MAKE_LOCAL_JSON: should likely be set to False in production, but can be set to True for testing. If set to True, the make_json() method will create a local file containing the JSON for you to inspect.

  • COMMIT_JSON_TO_GITHUB: should be set to True in production. If set to True, the commit_json() method will create or update a JSON file in the GitHub repository you specify. Can be set to False for testing, which will authenticate with GitHub but not create or update any files.

Data transformations

In many cases, you'll want to apply validation, formatting or transformations to your data before turning it into JSON, or even derive new keys/values based on data from specific columns. The transform_data method runs every row of data through an internal _transform_response_item function, providing a place for code that affects each object destined for your JSON. By default, _transform_response_item ensures that each value is translated to a unicode string, and gives you access to a _transformed_item to manipulate.

So if you wanted to, for example, create day and time values in your JSON based on concatenated values in a spreadsheet column called when, you could add the code below to _transform_response_item:

if 'when' in _transformed_item:
    # split values like 'Saturday 7pm' into `day` and `time`
    when = _transformed_item.pop('when', '').split(' ')
    _transformed_item['day'] = when[0]
    _transformed_item['time'] = when[1]

You may also set a skip flag during the _transform_response_item loop to eliminate a row from the JSON output. For example, if you want to ignore rows that do not have a numeric value in an id column in your spreadsheet:

if 'id' in _transformed_item:
    # remove rows without a numeric `id`
    try:
        int(_transformed_item['id'])
    except:
        skip = True

Usage notes

The fetch_data method pulls data from the spreadsheet identified in GOOGLE_SPREADSHEET_KEY. If you have data spread across multiple worksheets, you can set FETCH_MULTIPLE_WORKSHEETS to True, and optionally provide a list of sheet names to skip in WORKSHEETS_TO_SKIP.

It's more likely that all your data will come from a single worksheet; in this case, the script defaults to fetching from the first one in the spreadsheet.

datasheet = spreadsheet.get_worksheet(0)

If data is not in the first worksheet, you can provide a name value in GOOGLE_SPREADSHEET_SHEETNAME to identify the worksheet by title:

datasheet = spreadsheet.worksheet(GOOGLE_SPREADSHEET_SHEETNAME)

About

A lightweight Python script that fetches data from a Google spreadsheet, transforms to JSON, then optionally commits a data file to a GitHub repo. Suitable for dropping into projects as a task for cron or Slackbot trigger.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages