Skip to content

Commit

Permalink
Add an XLMRoberta Config to the HF transformers converter (#1290)
Browse files Browse the repository at this point in the history
* Add an XLMRoberta Config to the HF transformers converter

* Fix styling/formatting issues

* Reformat transformers.py with Black

---------

Co-authored-by: Vasil Filipov <[email protected]>
  • Loading branch information
vakkov and Vasil Filipov authored Jun 15, 2023
1 parent b2376b4 commit 7f358d2
Showing 1 changed file with 82 additions and 0 deletions.
82 changes: 82 additions & 0 deletions python/ctranslate2/converters/transformers.py
Original file line number Diff line number Diff line change
Expand Up @@ -1437,6 +1437,88 @@ def set_config(self, config, model, tokenizer):
config.layer_norm_epsilon = model.config.layer_norm_eps


@register_loader("XLMRobertaConfig")
class XLMRobertaLoader(ModelLoader):
@property
def architecture_name(self):
return "XLMRobertaForSequenceClassification"

def get_model_spec(self, model):
assert model.config.position_embedding_type == "absolute"

encoder_spec = transformer_spec.TransformerEncoderSpec(
model.config.num_hidden_layers,
model.config.num_attention_heads,
pre_norm=False,
activation=_SUPPORTED_ACTIVATIONS[model.config.hidden_act],
layernorm_embedding=True,
num_source_embeddings=2,
embeddings_merge=common_spec.EmbeddingsMerge.ADD,
)

if model.roberta.pooler is None:
pooling_layer = False
else:
pooling_layer = True

spec = transformer_spec.TransformerEncoderModelSpec(
encoder_spec,
pooling_layer=pooling_layer,
pooling_activation=common_spec.Activation.Tanh,
)

spec.encoder.scale_embeddings = False

self.set_embeddings(
spec.encoder.embeddings[0], model.roberta.embeddings.word_embeddings
)
self.set_embeddings(
spec.encoder.embeddings[1], model.roberta.embeddings.token_type_embeddings
)
self.set_position_encodings(
spec.encoder.position_encodings,
model.roberta.embeddings.position_embeddings,
)
self.set_layer_norm(
spec.encoder.layernorm_embedding, model.roberta.embeddings.LayerNorm
)
if pooling_layer:
self.set_linear(spec.pooler_dense, model.roberta.pooler.dense)

for layer_spec, layer in zip(spec.encoder.layer, model.roberta.encoder.layer):
split_layers = [common_spec.LinearSpec() for _ in range(3)]
self.set_linear(split_layers[0], layer.attention.self.query)
self.set_linear(split_layers[1], layer.attention.self.key)
self.set_linear(split_layers[2], layer.attention.self.value)
utils.fuse_linear(layer_spec.self_attention.linear[0], split_layers)

self.set_linear(
layer_spec.self_attention.linear[1], layer.attention.output.dense
)
self.set_layer_norm(
layer_spec.self_attention.layer_norm, layer.attention.output.LayerNorm
)

self.set_linear(layer_spec.ffn.linear_0, layer.intermediate.dense)
self.set_linear(layer_spec.ffn.linear_1, layer.output.dense)
self.set_layer_norm(layer_spec.ffn.layer_norm, layer.output.LayerNorm)

return spec

def set_vocabulary(self, spec, tokens):
spec.register_vocabulary(tokens)

def set_config(self, config, model, tokenizer):
config.unk_token = tokenizer.unk_token
config.layer_norm_epsilon = model.config.layer_norm_eps

def set_position_encodings(self, spec, module):
spec.encodings = module.weight.numpy()
offset = getattr(module, "padding_idx", 0)
if offset > 0:
spec.encodings = spec.encodings[offset + 1 :]


def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
Expand Down

0 comments on commit 7f358d2

Please sign in to comment.