-
Notifications
You must be signed in to change notification settings - Fork 42
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
CSV downloaded with synchronous "download" gives JSON-structured output #449
Comments
can you also include the preceding steps how to build the |
Hi @soxofaan , the process was: Also, its process garph is: {
"process_graph": {
"loadcollection1": {
"process_id": "load_collection",
"arguments": {
"bands": [
"B04",
"B08",
"SCL"
],
"id": "SENTINEL2_L2A",
"spatial_extent": null,
"temporal_extent": [
"2020-06-01",
"2020-10-01"
]
}
},
"reducedimension1": {
"process_id": "reduce_dimension",
"arguments": {
"data": {
"from_node": "loadcollection1"
},
"dimension": "bands",
"reducer": {
"process_graph": {
"arrayelement1": {
"process_id": "array_element",
"arguments": {
"data": {
"from_parameter": "data"
},
"index": 1
}
},
"arrayelement2": {
"process_id": "array_element",
"arguments": {
"data": {
"from_parameter": "data"
},
"index": 0
}
},
"subtract1": {
"process_id": "subtract",
"arguments": {
"x": {
"from_node": "arrayelement1"
},
"y": {
"from_node": "arrayelement2"
}
}
},
"add1": {
"process_id": "add",
"arguments": {
"x": {
"from_node": "arrayelement1"
},
"y": {
"from_node": "arrayelement2"
}
}
},
"divide1": {
"process_id": "divide",
"arguments": {
"x": {
"from_node": "subtract1"
},
"y": {
"from_node": "add1"
}
},
"result": true
}
}
}
}
},
"aggregatespatial1": {
"process_id": "aggregate_spatial",
"arguments": {
"data": {
"from_node": "reducedimension1"
},
"geometries": {
"type": "GeometryCollection",
"geometries": [
{
"type": "Polygon",
"coordinates": [
[
[
5.055945487931457,
51.222709834076504
],
[
5.064972484168688,
51.221122565090525
],
[
5.064972484168688,
51.221122565090525
],
[
5.067474954083448,
51.218249806779134
],
[
5.064827929485983,
51.21689628072789
],
[
5.05917785594747,
51.217191909908095
],
[
5.053553857094518,
51.21807492332223
],
[
5.055945487931457,
51.222709834076504
]
]
]
},
{
"type": "Polygon",
"coordinates": [
[
[
5.063345886679116,
51.23087606640057
],
[
5.06604742694687,
51.22886710731809
],
[
5.070627820472246,
51.22874440121892
],
[
5.068403609708207,
51.22657208381529
],
[
5.064823257492447,
51.22676051738515
],
[
5.064892324615199,
51.2283032878514
],
[
5.063641745941974,
51.2285757299238
],
[
5.062340811262595,
51.227722351687945
],
[
5.06076005158084,
51.228042312276536
],
[
5.063345886679116,
51.23087606640057
]
]
]
},
{
"type": "Polygon",
"coordinates": [
[
[
5.07163184674986,
51.23481147556147
],
[
5.076706025697324,
51.23317590781036
],
[
5.077828303041866,
51.233226237184724
],
[
5.078024733866917,
51.23263978271262
],
[
5.080771081607657,
51.23259097170763
],
[
5.083734842574312,
51.23530464074437
],
[
5.080957826735458,
51.23646091560258
],
[
5.079752631651647,
51.23519531038643
],
[
5.077238400183506,
51.23490534677628
],
[
5.072856439300575,
51.23593546777778
],
[
5.07163184674986,
51.23481147556147
]
]
]
},
{
"type": "Polygon",
"coordinates": [
[
[
5.083897244679042,
51.23510639883143
],
[
5.081302408741335,
51.232922477780846
],
[
5.082963802194108,
51.233146058575876
],
[
5.084497702305552,
51.232672717580655
],
[
5.085732850338428,
51.2340852086282
],
[
5.083897244679042,
51.23510639883143
]
]
]
}
]
},
"reducer": {
"process_graph": {
"mean1": {
"process_id": "mean",
"arguments": {
"data": {
"from_parameter": "data"
}
},
"result": true
}
}
}
},
"result": true
}
}
} |
Turns out this is an issue in python client: the output of If you add an explicit aggregates = cube.aggregate_spatial(geometries=geometries, reducer="mean")
result = aggregates.save_result(format="CSV")
result.download("tmp.csv") |
already fixed this for Still to do for |
addressing #402 will probably simplify and help with the unification of this file format (autodetection) feature |
closing this ticket: format guessing is supported in VectorCube now (since v0.21.0, released today) |
When downloading a csv file using a synchronous approach. It returns data in JSON format.
Performed:
cube.download("my_result.csv")
Resulted output sample in a csv file:
The text was updated successfully, but these errors were encountered: