Skip to content

Commit

Permalink
raw impl (#81)
Browse files Browse the repository at this point in the history
* raw impl

* fix bug

* refine

Co-authored-by: BBuf <[email protected]>
  • Loading branch information
Flowingsun007 and BBuf authored Sep 10, 2022
1 parent e8390ac commit 1b5a545
Show file tree
Hide file tree
Showing 3 changed files with 152 additions and 1 deletion.
45 changes: 45 additions & 0 deletions examples/oneflow2onnx/nodes/CPU/test_var.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
"""
Copyright 2020 The OneFlow Authors. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import tempfile
import oneflow as flow
from oneflow_onnx.oneflow2onnx.util import convert_to_onnx_and_check

class Var(flow.nn.Module):
def __init__(self) -> None:
super(Var, self).__init__()

def forward(self, x: flow.Tensor) -> flow.Tensor:
y = flow.var(x, dim=None, unbiased=True, keepdim=True)
return y

var_module = Var()
class VarOpGraph(flow.nn.Graph):
def __init__(self):
super().__init__()
self.m = var_module

def build(self, x):
out = self.m(x)
return out

def test_var():

var_op_graph = VarOpGraph()
var_op_graph._compile(flow.arange(48, dtype=flow.float32).reshape(2, 2, 3, 4))
convert_to_onnx_and_check(var_op_graph, onnx_model_path="/tmp", opset=13)

test_var()

46 changes: 46 additions & 0 deletions examples/oneflow2onnx/nodes/GPU/test_var.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
"""
Copyright 2020 The OneFlow Authors. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import tempfile
import oneflow as flow
from oneflow_onnx.oneflow2onnx.util import convert_to_onnx_and_check

class Var(flow.nn.Module):
def __init__(self) -> None:
super(Var, self).__init__()

def forward(self, x: flow.Tensor) -> flow.Tensor:
y = flow.var(x, dim=None, unbiased=True, keepdim=True)
return y

var_module = Var()
var_module = var_module.to("cuda")
class VarOpGraph(flow.nn.Graph):
def __init__(self):
super().__init__()
self.m = var_module

def build(self, x):
out = self.m(x)
return out

def test_var():

var_op_graph = VarOpGraph()
var_op_graph._compile(flow.arange(48, dtype=flow.float32).reshape(2, 2, 3, 4).to("cuda"))
convert_to_onnx_and_check(var_op_graph, onnx_model_path="/tmp", opset=13, device="gpu")

test_var()

62 changes: 61 additions & 1 deletion oneflow_onnx/oneflow2onnx/handlers/math.py
Original file line number Diff line number Diff line change
Expand Up @@ -302,7 +302,7 @@ def Version_14(cls, ctx, node, **kwargs):
pass

@flow_op("silu", onnx_op="Mul")
class HardSwish:
class Silu:
@classmethod
def Version_1(cls, ctx, node, **kwargs):
dtypes = node.output_dtypes
Expand Down Expand Up @@ -929,3 +929,63 @@ def Version_7(cls, ctx, node, **kwargs):
ctx.CopyShape(output_name, new_node.output_tensor_names[0])
ctx.set_dtype(new_node.output_tensor_names[0], ctx.get_dtype(output_name))


@flow_op(["var"])
class Var:
@classmethod
def Version_13(cls, ctx, node, **kwargs):
origin_dim = node.attrs.get("dim", None)
unbiased = node.attrs.get("unbiased", None)
keepdim = node.attrs.get("keepdim", None)
num_elements = 1
dtypes = node.output_dtypes
input_shape = ctx.get_shape(node.input_tensor_names[0])
keepdim_mean = 0 if origin_dim is None else keepdim

if origin_dim is None:
dim = []
for i in range(len(input_shape)):
num_elements *= input_shape[i]
dim.append(i)
reduce_mean_node = ctx.MakeNode(
"ReduceMean", [node.input_tensor_names[0]], op_name_scope=node.name, name="reduce_mean", dtypes=dtypes, attr={"axes":dim, "keepdims": 0}
)
t_mean = reduce_mean_node.output_tensor_names[0]

else:
reduce_mean_node = ctx.MakeNode(
"ReduceMean", [node.input_tensor_names[0]], op_name_scope=node.name, name="reduce_mean", dtypes=dtypes, attr={"axes":origin_dim, "keepdims": 1}
)
t_mean = reduce_mean_node.output_tensor_names[0]
for i in range(len(origin_dim)):
num_elements *= input_shape[i]

sub_node = ctx.MakeNode(
"Sub", [node.input_tensor_names[0], t_mean], op_name_scope=node.name, name="sub", dtypes=dtypes
)
sub_v = sub_node.output_tensor_names[0]
mul_node = ctx.MakeNode(
"Mul", [sub_v, sub_v], op_name_scope=node.name, name="mul", dtypes=dtypes
)
sqr_sub = mul_node.output_tensor_names[0]
if unbiased is None:
unbiased = False

ctx.RemoveNode(node.name)
if unbiased:
var_node = ctx.MakeNode(
"ReduceMean", [sqr_sub], op_name_scope=node.name, name="var", dtypes=dtypes, attr={"axes":origin_dim, "keepdims": keepdim_mean}
)
var = var_node.output_tensor_names[0]
scalar_node = ctx.MakeConst(
oneflow._oneflow_internal.UniqueStr("scalar"), np.array([num_elements]).astype(np.float32)
)
one = ctx.MakeConst(oneflow._oneflow_internal.UniqueStr("constant"), np.array([1]).astype(np.float32))
num_elements = scalar_node.output_tensor_names[0]
mul = ctx.MakeNode("Mul", [var, num_elements])
sub = ctx.MakeNode("Sub", [num_elements, one.output_tensor_names[0]])
var = ctx.MakeNode("Div", [mul.output_tensor_names[0], sub.output_tensor_names[0]], outputs=[node.output_tensor_names[0]])
else:
var_node = ctx.MakeNode(
"ReduceMean", [sqr_sub], op_name_scope=node.name, name="var", dtypes=dtypes, attr={"axes":origin_dim, "keepdims": keepdim_mean}, outputs=[node.output_tensor_names[0]]
)

0 comments on commit 1b5a545

Please sign in to comment.