Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merging of @Metjuperry: Added embedding endpoint and tests #38

Merged
merged 4 commits into from
Feb 3, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
59 changes: 59 additions & 0 deletions OpenAI_API/Embedding/EmbeddingEndpoint.cs
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
using System.Threading.Tasks;

namespace OpenAI_API.Embedding
{
/// <summary>
/// OpenAI’s text embeddings measure the relatedness of text strings by generating an embedding, which is a vector (list) of floating point numbers. The distance between two vectors measures their relatedness. Small distances suggest high relatedness and large distances suggest low relatedness.
/// </summary>
public class EmbeddingEndpoint : EndpointBase
{
/// <summary>
/// This allows you to send request to the recommended model without needing to specify. Every request uses the <see cref="Model.AdaTextEmbedding"/> model
/// </summary>
public EmbeddingRequest DefaultEmbeddingRequestArgs { get; set; } = new EmbeddingRequest() { Model = Model.AdaTextEmbedding };

/// <summary>
/// The name of the endpoint, which is the final path segment in the API URL. For example, "embeddings".
/// </summary>
protected override string Endpoint { get { return "embeddings"; } }

/// <summary>
/// Constructor of the api endpoint. Rather than instantiating this yourself, access it through an instance of <see cref="OpenAIAPI"/> as <see cref="OpenAIAPI.Embeddings"/>.
/// </summary>
/// <param name="api"></param>
internal EmbeddingEndpoint(OpenAIAPI api) : base(api) { }

/// <summary>
/// Ask the API to embedd text using the default embedding model <see cref="Model.AdaTextEmbedding"/>
/// </summary>
/// <param name="input">Text to be embedded</param>
/// <returns>Asynchronously returns the embedding result. Look in its <see cref="Data.Embedding"/> property of <see cref="EmbeddingResult.Data"/> to find the vector of floating point numbers</returns>
public async Task<EmbeddingResult> CreateEmbeddingAsync(string input)
{
EmbeddingRequest req = new EmbeddingRequest(DefaultEmbeddingRequestArgs.Model, input);
return await CreateEmbeddingAsync(req);
}

/// <summary>
/// Ask the API to embedd text using a custom request
/// </summary>
/// <param name="request">Request to be send</param>
/// <returns>Asynchronously returns the embedding result. Look in its <see cref="Data.Embedding"/> property of <see cref="EmbeddingResult.Data"/> to find the vector of floating point numbers</returns>
public async Task<EmbeddingResult> CreateEmbeddingAsync(EmbeddingRequest request)
{
return await HttpPost<EmbeddingResult>(postData: request);
}

/// <summary>
/// Ask the API to embedd text using the default embedding model <see cref="Model.AdaTextEmbedding"/>
/// </summary>
/// <param name="input">Text to be embedded</param>
/// <returns>Asynchronously returns the first embedding result as an array of floats.</returns>
public async Task<float[]> GetEmbeddingsAsync(string input)
{
EmbeddingRequest req = new EmbeddingRequest(DefaultEmbeddingRequestArgs.Model, input);
var embeddingResult = await CreateEmbeddingAsync(req);
return embeddingResult?.Data?[0]?.Embedding;
}
}
}
51 changes: 51 additions & 0 deletions OpenAI_API/Embedding/EmbeddingRequest.cs
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
using Newtonsoft.Json;

namespace OpenAI_API.Embedding
{
/// <summary>
/// Represents a request to the Completions API. Matches with the docs at <see href="https://platform.openai.com/docs/api-reference/embeddings">the OpenAI docs</see>
/// </summary>
public class EmbeddingRequest
{
/// <summary>
/// ID of the model to use. You can use <see cref="ModelsEndpoint.GetModelsAsync()"/> to see all of your available models, or use a standard model like <see cref="Model.AdaTextEmbedding"/>.
/// </summary>
[JsonProperty("model")]
public string Model { get; set; }

/// <summary>
/// Main text to be embedded
/// </summary>
[JsonProperty("input")]
public string Input { get; set; }

/// <summary>
/// Cretes a new, empty <see cref="EmbeddingRequest"/>
/// </summary>
public EmbeddingRequest()
{

}

/// <summary>
/// Creates a new <see cref="EmbeddingRequest"/> with the specified parameters
/// </summary>
/// <param name="model">The model to use. You can use <see cref="ModelsEndpoint.GetModelsAsync()"/> to see all of your available models, or use a standard model like <see cref="Model.AdaTextEmbedding"/>.</param>
/// <param name="input">The prompt to transform</param>
public EmbeddingRequest(Model model, string input)
{
Model = model;
this.Input = input;
}

/// <summary>
/// Creates a new <see cref="EmbeddingRequest"/> with the specified input and the <see cref="Model.AdaTextEmbedding"/> model.
/// </summary>
/// <param name="input">The prompt to transform</param>
public EmbeddingRequest(string input)
{
Model = OpenAI_API.Model.AdaTextEmbedding;
this.Input = input;
}
}
}
79 changes: 79 additions & 0 deletions OpenAI_API/Embedding/EmbeddingResult.cs
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
using Newtonsoft.Json;
using System.Collections.Generic;
using System.Linq;

namespace OpenAI_API.Embedding
{
/// <summary>
/// Represents an embedding result returned by the Embedding API.
/// </summary>
public class EmbeddingResult : ApiResultBase
{
/// <summary>
/// List of results of the embedding
/// </summary>
[JsonProperty("data")]
public List<Data> Data { get; set; }

/// <summary>
/// Usage statistics of how many tokens have been used for this request
/// </summary>
[JsonProperty("usage")]
public Usage Usage { get; set; }

/// <summary>
/// Allows an EmbeddingResult to be implicitly cast to the array of floats repsresenting the first ebmedding result
/// </summary>
/// <param name="embeddingResult">The <see cref="EmbeddingResult"/> to cast to an array of floats.</param>
public static implicit operator float[](EmbeddingResult embeddingResult)
{
return embeddingResult.Data.FirstOrDefault()?.Embedding;
}
}

/// <summary>
/// Data returned from the Embedding API.
/// </summary>
public class Data
{
/// <summary>
/// Type of the response. In case of Data, this will be "embedding"
/// </summary>
[JsonProperty("object")]

public string Object { get; set; }

/// <summary>
/// The input text represented as a vector (list) of floating point numbers
/// </summary>
[JsonProperty("embedding")]
public float[] Embedding { get; set; }

/// <summary>
/// Index
/// </summary>
[JsonProperty("index")]
public int Index { get; set; }

}

/// <summary>
/// Usage statistics of how many tokens have been used for this request.
/// </summary>
public class Usage
{
/// <summary>
/// How many tokens did the prompt consist of
/// </summary>
[JsonProperty("prompt_tokens")]
public int PromptTokens { get; set; }

/// <summary>
/// How many tokens did the request consume total
/// </summary>
[JsonProperty("total_tokens")]
public int TotalTokens { get; set; }

}

}
11 changes: 9 additions & 2 deletions OpenAI_API/OpenAIAPI.cs
Original file line number Diff line number Diff line change
@@ -1,4 +1,6 @@
using OpenAI_API.Files;
using Newtonsoft.Json;
using OpenAI_API.Embedding;
using System;

namespace OpenAI_API
Expand All @@ -12,7 +14,7 @@ public class OpenAIAPI
/// Base url for OpenAI
/// </summary>
public string ApiUrlBase = "https://api.openai.com/v1/";

/// <summary>
/// The API authentication information to use for API calls
/// </summary>
Expand All @@ -28,14 +30,19 @@ public OpenAIAPI(APIAuthentication apiKeys = null)
Completions = new CompletionEndpoint(this);
Models = new ModelsEndpoint(this);
//Search = new SearchEndpoint(this);
Files = new FilesEndpoint(this);
Embeddings = new EmbeddingEndpoint(this);
}

/// <summary>
/// Text generation is the core function of the API. You give the API a prompt, and it generates a completion. The way you “program” the API to do a task is by simply describing the task in plain english or providing a few written examples. This simple approach works for a wide range of use cases, including summarization, translation, grammar correction, question answering, chatbots, composing emails, and much more (see the prompt library for inspiration).
/// </summary>
public CompletionEndpoint Completions { get; }

/// <summary>
/// The API lets you transform text into a vector (list) of floating point numbers. The distance between two vectors measures their relatedness. Small distances suggest high relatedness and large distances suggest low relatedness.
/// </summary>
public EmbeddingEndpoint Embeddings { get; }

/// <summary>
/// The API endpoint for querying available Engines/models
/// </summary>
Expand Down
43 changes: 43 additions & 0 deletions OpenAI_Tests/EmbeddingEndpointTests.cs
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
using NUnit.Framework;
using OpenAI_API;
using OpenAI_API.Embedding;
using System;
using System.Linq;

namespace OpenAI_Tests
{
public class EmbeddingEndpointTests
{
[SetUp]
public void Setup()
{
OpenAI_API.APIAuthentication.Default = new OpenAI_API.APIAuthentication(Environment.GetEnvironmentVariable("TEST_OPENAI_SECRET_KEY"));
}

[Test]
public void GetBasicEmbedding()
{
var api = new OpenAI_API.OpenAIAPI();

Assert.IsNotNull(api.Embeddings);

var results = api.Embeddings.CreateEmbeddingAsync(new EmbeddingRequest(Model.AdaTextEmbedding, "A test text for embedding")).Result;
Assert.IsNotNull(results);
Assert.NotNull(results.Object);
Assert.NotZero(results.Data.Count);
Assert.That(results.Data.First().Embedding.Length == 1536);
}

[Test]
public void GetSimpleEmbedding()
{
var api = new OpenAI_API.OpenAIAPI();

Assert.IsNotNull(api.Embeddings);

var results = api.Embeddings.GetEmbeddingsAsync("A test text for embedding").Result;
Assert.IsNotNull(results);
Assert.That(results.Length == 1536);
}
}
}